PREX/CREX Software, Optics, Tracking

Seamus Riordan seamus@anl.gov

February 25, 2018

- Tracking Requirements and Software
- Optics MC
- AT Detector Configuration Modification

Requirements

- $\bullet\,$ We have a track rate of $\sim\,$ 10 $\,{\rm MHz}/\mu{\rm A}$
 - Need 1 μ A to use standard beam monitors
 - $Max \sim 2 \ kHz/mm^2$ at VDC and quartz
- VDC's with standard electronics can operate at 20 kHz/wire (1 cm spacing), APEX goes to 75 kHz/wire (this could be left in?)
- $\bullet\,$ GEMs demonstrated to work at 25 $\rm kHz/mm^2$

Requirements

- We have a track rate of $\sim 10 \text{ MHz}/\mu\text{A}$
 - Need 1 μ A to use standard beam monitors
 - Max $\sim 2 \text{ kHz/mm}^2$ at VDC and guartz
- VDC's with standard electronics can operate at 20 kHz/wire (1 cm spacing), APEX goes to 75 kHz/wire (this could be left in?)
- GEMs demonstrated to work at 25 kHz/mm²

Seamus Riordan (ANL)

SBS GEM Production

- UVA produced 48 50 \times 60 cm² modules for SBS
- Testing has been ongoing with beam and cosmics with setup at JLab
 - "Terabytes of data" collected to be analyzed
- New frame will have to be designed will do at ANL

Plans Readout

- Have 3 10×20 cm (in det stand) and 3 SBS GEMs in each arm (hard mounted to HRS)
- CODA APV25 readout systems are being deployed for GEMs in JLab-related development activities
 - MPD will be employed by SBS, VME based (1 module = 2048 channels)
- Will have two working systems
- Have MPD decoder integrated into analyzer that works but not integrated with higher level analysis yet
- https://github.com/JeffersonLab/ SBS-Offline
- Done basic work with SBU students

Seamus Riordan (ANL)

re 6/18

Tracking

- Tracking for GEMs can be solved using standard Hall A Tree Search Alogrithm by Ole
- Has been integrated in with analyzer by Ole (TreeSearch-GEM library exists) - still needs to be worked into our replay
- SBS and SoLID need to produce GEM pseudodata to test tracking software this is a good addition

- UConn (Fuchey) and UVA (Di) has been actively working on doing pseudodata simulation for SBS
 - Not trivial to reproduce for PREX case
 - Resources on this would be useful

• Analysis of test GEM data should continue with SBU and ISU

- Worked out fitting time structures
- Have method to do zero suppression, common mode noise
- Needs to be integrated into replay
- Clustering algorithm needs to be included simple fits probably OK for low rate
- Tracking needs to be set up for configuration
- Really need operational experience in collaboration test stands eventually with CODA important
- ISU and SBU cosmic stand data should have regular meetings to bring online

- Sufficient GEMs will exist for PREX/CREX running for our tracking purposes
- Frame design needs to be considered for SBS inclusion
- DAQ electronics exist and will need to be incorporated into our system already integrated into CODA
- Counting mode decoder and software libraries need to be updated to handle tree search with GEMs

• Produced second order transport code a while ago

```
https://github.com/sbujlab/hrstrans
```

• Uses basic matrices using elements calculated here

https://cds.cern.ch/record/283218/files/SLAC-75.pdf

- Nickie validated with his G4MC transport and SNAKE
- Have PREX and standard tune configurations
- Example code on optimizing matrix elements and acceptance for tunes
- Main tool from Ryan as we explore data

Simulation

g4hrs: GEANT4 simulation of HRS optics is functional and producing results

electron propagated along central trajectory

Seamus Riordan (ANL)

1/3

Progress

- Overhauled code based on **remoll** structure and generators
- Vastly reduced and simplified input files necessary to run the simulation or change running conditions
- Added ParallelWorld geometry containing virtual detectors to measure position and angle at key planes
- Built SNAKE FORTRAN functions directly into simulation for event-by-event comparison
- Included most up-to-date septum field map
- Implemented easily adjustable field settings able to set individual magnets or specify an overall tune
- Verified central trajectory ray

2/3

Next steps

- Tune matrix elements
- Reproduce data and hamc distributions
- Begin looking at engineering impact on acceptance and FOM

3/3

More in Ryan's talk

- Is A_T sensitivity real, predictable, and controllable in optics?
- Is our tune appropriately optimized?
 - What does the raster do to us?
 - Better way to do A_T ?
- Optimal detector placement w/ GEMs

Two A_T Detector Weakness

- A_T contribs monitored by A_T detector (left arm right arm)
- Horizontal polarization hurts A_{PV} for acceptance asymmetries
- If transverse polarization lies the A_T det plane you measure 0
- Correlary: Vertical polarization will easily overwhelm A_T detectors must be guaranteed to be supressed
- Propose 4 A_T detectors to do linear separation

BACKUP

Seamus Riordan (ANL)

A_T Evaluation

- A_T detector was oriented in one direction of azimuth
- More robust system would have pair of detectors in each arm
- For symmetric system, out of plane polarization cancels
- Contribution to $A_{\rm PV}$ for azimuthal shift $\phi \rightarrow \phi + \delta$ and bite $\Delta \phi$

$$egin{array}{rcl} \mathcal{A}_{\mathrm{V}} &=& \displaystylerac{\mathcal{A}_{0}}{\Delta \phi} \sin \Delta \phi \left(\cos \delta_{\mathrm{L}} - \cos \delta_{\mathrm{R}}
ight) \ \mathcal{A}_{\mathrm{H}} &=& \displaystylerac{\mathcal{A}_{0}}{\Delta \phi} \sin \Delta \phi \left(\sin \delta_{\mathrm{L}} - \sin \delta_{\mathrm{R}}
ight) \end{array}$$

• A_T detectors at δ measure the SUM of these

$$\begin{array}{lll} A_{\rm V}^{AT} & = & \displaystyle \frac{A_0}{\Delta\phi_{AT}} \sin \Delta\phi_{AT} \cos \delta \\ A_{\rm H}^{AT} & = & \displaystyle \frac{A_0}{\Delta\phi_{AT}} \sin \Delta\phi_{AT} \sin \delta \end{array}$$

- A_T detectors will be overwhelmed by vertical polarization, but horizontal hurts $A_{\rm PV}$ linearly in ϕ
- top-bottom asymmetry in same arm can help deconvolute

Seamus Riordan (ANL)