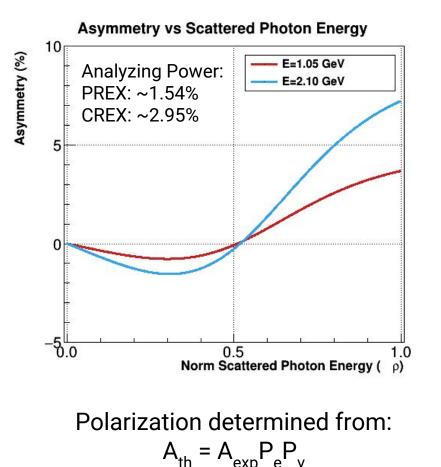
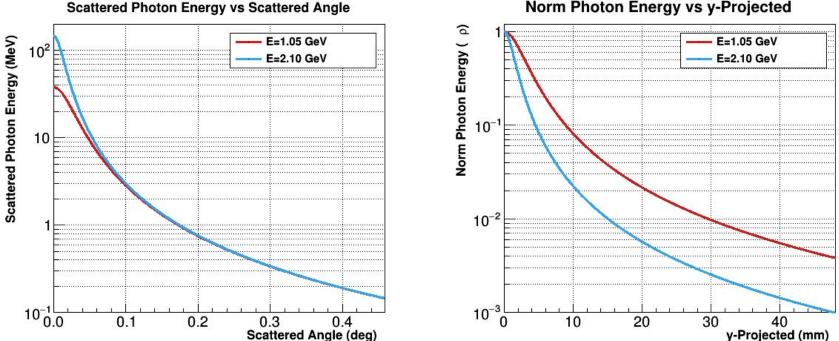
Compton Photon Detector for PREX2/CREX


Juan Carlos Cornejo PREX2/CREX Collaboration Meeting July 25, 2018

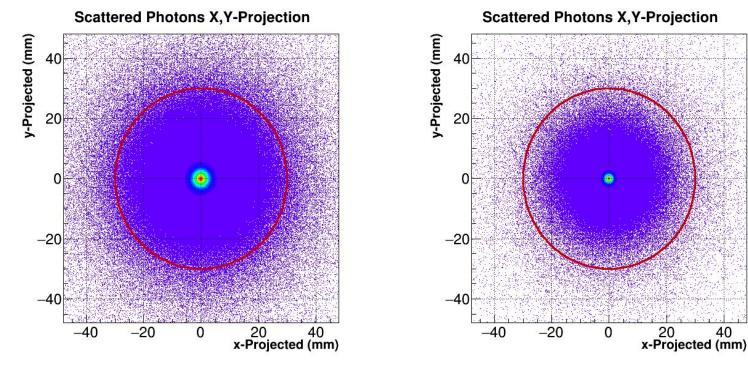
Talk Outline

- Requirements for a γ-detector & summary of GSO detector
- Preparations for PREX/CREX2
 - Optimising PMT+base @ CMU
- Summary of commissioning plans


Compton Scattering and Beam Polarization

- $\rho = E_{\gamma}/E_{\gamma}^{max}$ where E_{γ}^{max} is the maximum kinematically allowed scattered photon energy \rightarrow we call this the "Compton Edge"
 - $\circ E_v^{\max} \propto E_{beam}^2$
 - For PREX: ~38 MeV
 - For CREX: ~146 MeV
- Since asymmetry is larger at larger scattered energies → need to use detector capable of capturing most of the γ's shower.

Compton Scattering and Beam Polarization (cont.)


Most photons backscatter with very small angles. The fraction of scattered photons with given ρ scattering at small angles increases with beam energy.

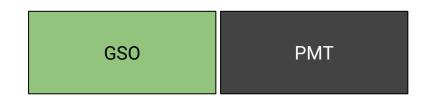
Norm Photon Energy vs y-Projected

Scattered Photons Projected onto y-detector

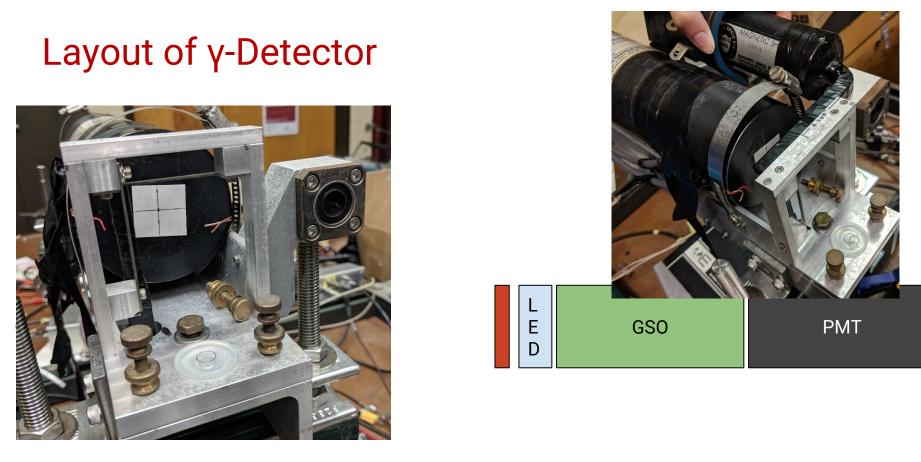
• ~6 m downstream of interaction point, >99% of scattered photons are within a 3 cm radius \rightarrow Place γ -detector downstream

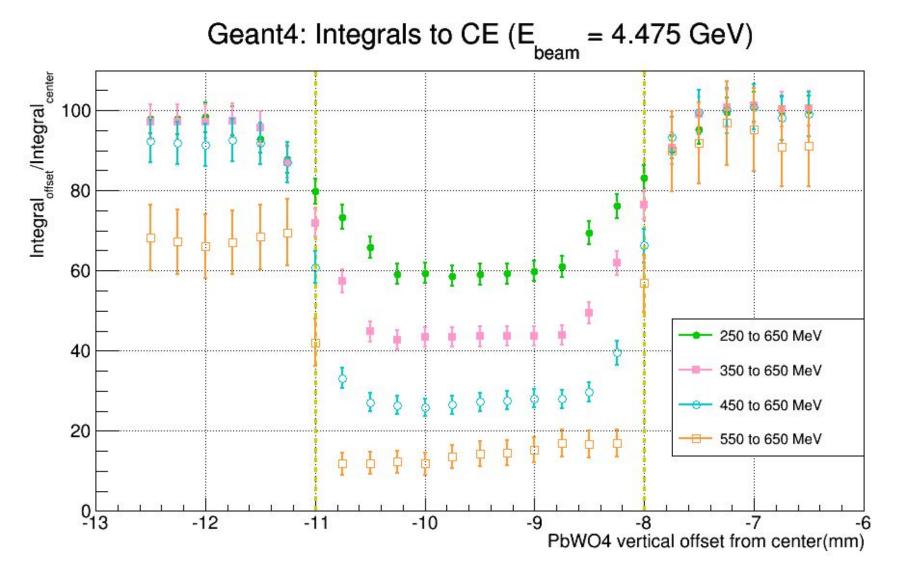
γ-Detector for PREX2 & CREX

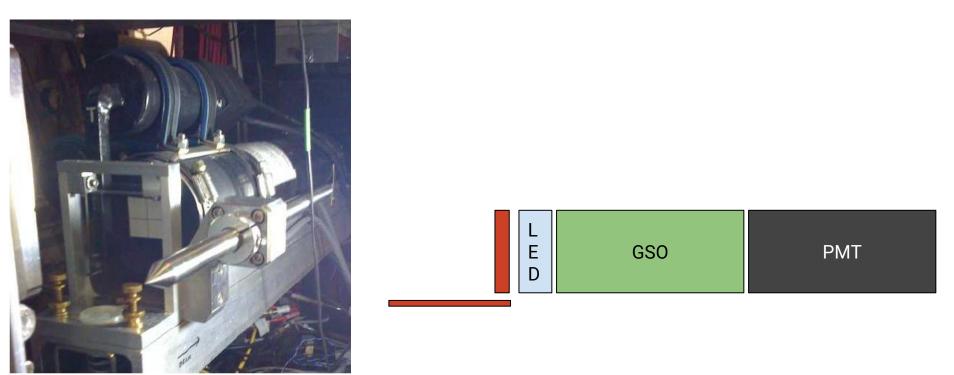
Single GSO crystal manufactured by Hitachi Chemical


- 0.5% Ce-doped Gd_2SiO_5
- 6 cm diameter x 15 cm length

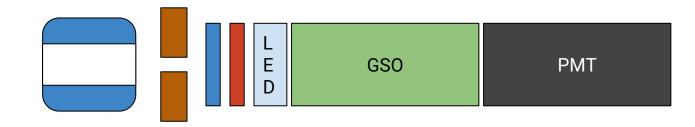
A view of how the almost-complete detector sitting in lab bench @ CMU


Photon detector is positioned downstream of interaction point

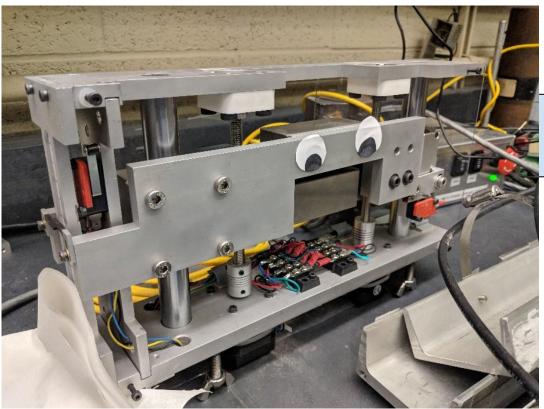

Several LED's are positioned at the front of the GSO \rightarrow Used to monitor detector linearity



Two "finger" scintillators positioned in front of main detector and behind tungsten "fingers" \rightarrow Used to center scattered photons on detector.

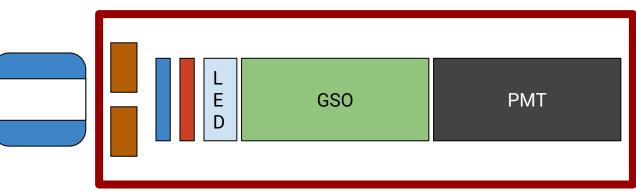

A metal cylinder is used to center (visually) the detector. It also provides a reference point for surveys. Due to interferences, it will be mounted only for installation.

Synchrotron shielding: Lead collimator with apertures of 0.5 cm - 2 cm permanently mounted in front of detector. Changing aperture on collimator requires Hall Access...



Additional pieces of thin pb plates (of a few mm's each) placed in front of detector.

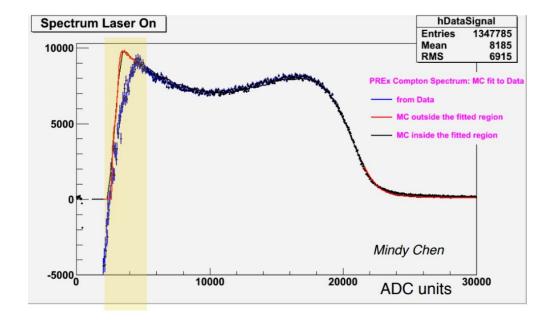
Add a remote-controllable Tungsten collimator. Aperture contrable from ~1 mm to ~5 cm.


Add a remote-controllable Tungsten collimator. Aperture contrable from ~1 mm to ~5 cm.

Can also be used to center scattered photons on detector.

These components are mounted on detector stand and sits on a remote-controllable table with x,y motion

Modifications to the detector stand


- The top "finger" scintillator PMT has been moved to the bottom
 - \circ $\,$ This is due to the beam height being smaller than during PREX-1 $\,$
- Front of stand has to be modified so that Tungsten Collimator system and synchrotron shields can be mounted in front.
- Biggest concern right now is ensuring it all fits inside the table and that it has free mobility without bumping into a screw at the bottom of the electron detector stand.
- CMU machinist has taken measurements of the clearances in the table, and will modify the stand this Fall.

Measuring Detector Linearity

- A system (mini-Megan) of 3 LEDs are used
 - LED1 is Delta: Fixed LED brightness of low intensity
 - LED2 is Variable: Brightness stepped through different intensities to mimic real Compton photon signals of various energies.
 - LED3 (bench tests): Either a fixed non-pulsing LED with minimum brightness (to mimic baseline shift when PMT under load). Second option is a rapidly pulsing LED.
 - This LED not necessary at JLab, and only used during bench tests at CMU
- Goal is to keep this relation as constant as possible: y(x) = f(x+δ) f(x), where x is Variable setting.

Measuring Detector Linearity @ CMU

- Data from previous experiments is used to establish Compton Edge and detector response
 - For example, Compton edge here at 20000 srau (1rau ~ 2mV)

Measuring Detector Linearity @ CMU (cont.)

- Data from previous experiments is used to establish Compton Edge and detector response
 - For example, Compton edge here at 20000 srau (1rau ~ 2mV)
- This is used to estimate detector response at the Compton Edge for the given beam energies and laser wavelength used for PREX and CREX.
- Any non-linearities can be addressed by adding resistors, capacitors at the various dynode stages to minimize any voltage-sagging or space-charge effects.
 - Adding Zener diodes at the last stages helps

Preparing Detector for PREX-II/CREX

- GSO and PMTs are @ CMU → have working DAQ and is available for bench tests.
- Plan is to have PMT+base for PREX and a separate PMT+base for CREX
- Work on PMT+base for PREX in advanced stage → have already seen nonlinearities of 1% or better, but work will continue this Fall.
- Brian + CMU student will work on PMT+base for CREX this fall
 Student only committed for the Fall as her PhD project is non-JLab physics.
- DAQ presently @ TestLab for summer SBS work → linearity work can start when DAQ back @ CMU (no earlier than late August to early September).

Commissioning Detector at experiment start

- Besides the ones Kent already mentioned, we also need:
- Need to identify level of Synchrotron radiation and necessary level of shielding.
 - Changing pieces of thin-lead require access to the hall → will try to choose the right level at the start of the experiment to minimize interference.
 - $\circ \quad \text{Tungsten Collimator can be controlled from upstairs} \rightarrow \text{can be} \\ \text{dynamically changed to address present conditions during running.}$
- Center scattered photons on detector and collimator
 - $\circ~$ If beam is too far center of collimator \rightarrow need to steer beam
 - If centered on collimator, γ-detector can be centered by Compton experts with no interference to the experiment. This is done by moving the table from upstairs in the Counting House.

Summary

- GSO crystal being prepared @ CMU for use.
 - PMT+base in advanced stage for PREX already
 - Will start preparation of PMT+base for CREX this Fall @ CMU
- Slight modifications to detector stand are needed
 - Expect to be completed this Fall.
- Have plans already for commissioning of the detector