Slug: 146 IHWP: In Wein: Left HRS: Both Units: Yields: bpm (mm), bcm (uA), sam/det (mV_uA) Asym: bcm/sam/det mean (ppb), bcm/sam/det width (ppm) Diff: bpm (nm) Slopes: All Devices (ppb/nm) ====== Yields ====== yield_bcm_an_ds| Mean: 148.1910+/- 0.0006 Width: 0.5411+/- 0.0004 yield_bcm_an_ds3| Mean: 148.9534+/- 0.0006 Width: 0.5480+/- 0.0004 yield_bcm_an_us| Mean: 147.9958+/- 0.0006 Width: 0.5430+/- 0.0004 yield_bcm_dg_us| Mean: 149.3920+/- 0.0006 Width: 0.5706+/- 0.0005 yield_bcm_dg_ds| Mean: 148.8041+/- 0.0006 Width: 0.5705+/- 0.0005 yield_cav4bQ| Mean: 146.1261+/- 0.0011 Width: 0.8259+/- 0.0008 yield_cav4cQ| Mean: 149.5400+/- 0.0007 Width: 0.6307+/- 0.0005 yield_cav4dQ| Mean: 148.8745+/- 0.0007 Width: 0.5848+/- 0.0005 yield_bcm0l02| Mean: 133.2093+/- 0.0011 Width: 0.8946+/- 0.0008 yield_bpm0i01WS| Mean: 147816.7383+/- 0.2713 Width: 240.6769+/- 0.1918 yield_bpm0i01aWS| Mean: 147369.8640+/- 0.2793 Width: 247.2044+/- 0.1975 yield_bpm0l01WS| Mean: 120535.0301+/- 0.2478 Width: 218.1595+/- 0.1752 yield_bpm0l02WS| Mean: 138386.4363+/- 0.4045 Width: 355.7421+/- 0.2860 yield_bpm0l03WS| Mean: 134564.4652+/- 0.7079 Width: 616.3492+/- 0.5006 yield_bpm0l04WS| Mean: 126677.3773+/- 0.2635 Width: 233.3719+/- 0.1863 yield_bpm0l05WS| Mean: 130827.3998+/- 0.2801 Width: 247.9299+/- 0.1980 yield_bpm0l06WS| Mean: 125492.4752+/- 0.2626 Width: 232.8151+/- 0.1857 yield_bpm0l07WS| Mean: 142329.4640+/- 0.3058 Width: 271.0557+/- 0.2163 yield_bpm0l08WS| Mean: 144564.0969+/- 0.3057 Width: 270.5136+/- 0.2162 yield_bpm0l09WS| Mean: 139454.3588+/- 0.3330 Width: 293.7178+/- 0.2355 yield_bpm0l10WS| Mean: 140073.5782+/- 0.3030 Width: 268.6145+/- 0.2143 yield_bpm0r03WS| Mean: 133960.7426+/- 0.4577 Width: 391.1797+/- 0.3236 yield_bpm0r05WS| Mean: 130669.6611+/- 0.3594 Width: 307.2132+/- 0.2542 yield_bpm0i02WS| Mean: 139053.7043+/- 0.3106 Width: 267.2645+/- 0.2197 yield_bpm0i02aWS| Mean: 139674.5157+/- 0.2971 Width: 259.9341+/- 0.2101 yield_bpm0i05WS| Mean: 153840.2108+/- 0.2855 Width: 252.5218+/- 0.2019 yield_bpm0i07WS| Mean: 154934.0870+/- 0.2861 Width: 253.7322+/- 0.2023 yield_bpm1i02WS| Mean: 144155.6089+/- 0.2300 Width: 203.6776+/- 0.1627 yield_bpm1i04WS| Mean: 142795.9289+/- 0.2292 Width: 202.5479+/- 0.1621 yield_bpm1i06WS| Mean: 151876.1034+/- 0.2835 Width: 252.4438+/- 0.2005 yield_bpm2i01WS| Mean: 128766.1485+/- 0.2269 Width: 200.2045+/- 0.1604 yield_bpm2i02WS| Mean: 133486.2836+/- 0.2356 Width: 208.0409+/- 0.1666 yield_cav4bX| Mean: -0.7469+/- 0.0000 Width: 0.0333+/- 0.0000 yield_cav4bY| Mean: -0.8320+/- 0.0000 Width: 0.0134+/- 0.0000 yield_cav4cX| Mean: -0.0043+/- 0.0000 Width: 0.0018+/- 0.0000 yield_cav4cY| Mean: -0.1219+/- 0.0000 Width: 0.0012+/- 0.0000 yield_cav4dX| Mean: 0.0244+/- 0.0000 Width: 0.0104+/- 0.0000 yield_cav4dY| Mean: -0.0777+/- 0.0000 Width: 0.0007+/- 0.0000 yield_bpm4aX| Mean: -0.4996+/- 0.0000 Width: 0.0231+/- 0.0000 yield_bpm4aY| Mean: 0.6216+/- 0.0000 Width: 0.0161+/- 0.0000 yield_bpm4eX| Mean: -0.1134+/- 0.0000 Width: 0.0218+/- 0.0000 yield_bpm4eY| Mean: 0.3340+/- 0.0000 Width: 0.0137+/- 0.0000 yield_bpm4acX| Mean: -0.8519+/- 0.0000 Width: 0.0226+/- 0.0000 yield_bpm4acY| Mean: 0.7873+/- 0.0000 Width: 0.0161+/- 0.0000 yield_bpm4ecX| Mean: -0.1051+/- 0.0000 Width: 0.0222+/- 0.0000 yield_bpm4ecY| Mean: 0.0577+/- 0.0000 Width: 0.0134+/- 0.0000 yield_bpm1X| Mean: 0.9191+/- 0.0000 Width: 0.0186+/- 0.0000 yield_bpm1Y| Mean: 6.1009+/- 0.0000 Width: 0.0141+/- 0.0000 yield_bpm11X| Mean: 0.7898+/- 0.0000 Width: 0.0128+/- 0.0000 yield_bpm11Y| Mean: -0.6961+/- 0.0000 Width: 0.0190+/- 0.0000 yield_bpm12X| Mean: -1.2053+/- 0.0000 Width: 0.0331+/- 0.0000 yield_bpm12Y| Mean: 0.3804+/- 0.0000 Width: 0.0127+/- 0.0000 yield_bpm16X| Mean: -0.4358+/- 0.0000 Width: 0.0118+/- 0.0000 yield_bpm16Y| Mean: -0.2249+/- 0.0000 Width: 0.0058+/- 0.0000 yield_bpm0i02X| Mean: -0.4383+/- 0.0000 Width: 0.0066+/- 0.0000 yield_bpm0i02Y| Mean: -2.5023+/- 0.0000 Width: 0.0133+/- 0.0000 yield_bpm0i02aX| Mean: 1.3264+/- 0.0000 Width: 0.0131+/- 0.0000 yield_bpm0i02aY| Mean: -1.3217+/- 0.0000 Width: 0.0110+/- 0.0000 yield_bpm0i05X| Mean: -0.9727+/- 0.0000 Width: 0.0079+/- 0.0000 yield_bpm0i05Y| Mean: -0.4459+/- 0.0000 Width: 0.0045+/- 0.0000 yield_bpm0i07X| Mean: -0.3922+/- 0.0000 Width: 0.0058+/- 0.0000 yield_bpm0i07Y| Mean: 0.2434+/- 0.0000 Width: 0.0034+/- 0.0000 yield_bpm1i02X| Mean: -2.4799+/- 0.0000 Width: 0.0152+/- 0.0000 yield_bpm1i02Y| Mean: -0.9528+/- 0.0000 Width: 0.0105+/- 0.0000 yield_bpm1i04X| Mean: 1.0020+/- 0.0000 Width: 0.0108+/- 0.0000 yield_bpm1i04Y| Mean: 2.0729+/- 0.0000 Width: 0.0095+/- 0.0000 yield_bpm1i06X| Mean: -0.0959+/- 0.0000 Width: 0.0162+/- 0.0000 yield_bpm1i06Y| Mean: 0.7648+/- 0.0000 Width: 0.0040+/- 0.0000 yield_bpm2i01X| Mean: 0.2994+/- 0.0000 Width: 0.0017+/- 0.0000 yield_bpm2i01Y| Mean: -3.8934+/- 0.0000 Width: 0.0021+/- 0.0000 yield_bpm2i02X| Mean: 0.5290+/- 0.0000 Width: 0.0113+/- 0.0000 yield_bpm2i02Y| Mean: -2.4129+/- 0.0000 Width: 0.0093+/- 0.0000 yield_bpm0i01X| Mean: 0.7954+/- 0.0000 Width: 0.0129+/- 0.0000 yield_bpm0i01Y| Mean: -2.2801+/- 0.0000 Width: 0.0045+/- 0.0000 yield_bpm0i01aX| Mean: -1.6352+/- 0.0000 Width: 0.0092+/- 0.0000 yield_bpm0i01aY| Mean: 1.1366+/- 0.0000 Width: 0.0073+/- 0.0000 yield_bpm0l01X| Mean: -1.8122+/- 0.0000 Width: 0.0072+/- 0.0000 yield_bpm0l01Y| Mean: -7.7506+/- 0.0000 Width: 0.0092+/- 0.0000 yield_bpm0l02X| Mean: -2.8860+/- 0.0000 Width: 0.0203+/- 0.0000 yield_bpm0l02Y| Mean: 0.4543+/- 0.0000 Width: 0.0088+/- 0.0000 yield_bpm0l03X| Mean: -3.9537+/- 0.0001 Width: 0.0990+/- 0.0001 yield_bpm0l03Y| Mean: 2.0492+/- 0.0001 Width: 0.1055+/- 0.0001 yield_bpm0l04X| Mean: -2.8706+/- 0.0000 Width: 0.0083+/- 0.0000 yield_bpm0l04Y| Mean: 1.1011+/- 0.0000 Width: 0.0077+/- 0.0000 yield_bpm0l05X| Mean: -1.7545+/- 0.0000 Width: 0.0064+/- 0.0000 yield_bpm0l05Y| Mean: 0.8510+/- 0.0000 Width: 0.0065+/- 0.0000 yield_bpm0l06X| Mean: 2.3508+/- 0.0000 Width: 0.0080+/- 0.0000 yield_bpm0l06Y| Mean: -2.3300+/- 0.0000 Width: 0.0032+/- 0.0000 yield_bpm0l07X| Mean: -0.3325+/- 0.0000 Width: 0.0132+/- 0.0000 yield_bpm0l07Y| Mean: 0.1438+/- 0.0000 Width: 0.0024+/- 0.0000 yield_bpm0l08X| Mean: 0.0900+/- 0.0000 Width: 0.0121+/- 0.0000 yield_bpm0l08Y| Mean: -0.3118+/- 0.0000 Width: 0.0033+/- 0.0000 yield_bpm0l09X| Mean: 0.7495+/- 0.0000 Width: 0.0118+/- 0.0000 yield_bpm0l09Y| Mean: -0.0958+/- 0.0000 Width: 0.0041+/- 0.0000 yield_bpm0l10X| Mean: -1.1245+/- 0.0000 Width: 0.0105+/- 0.0000 yield_bpm0l10Y| Mean: -0.5395+/- 0.0000 Width: 0.0043+/- 0.0000 yield_bpm0r03X| Mean: -2.6418+/- 0.0001 Width: 0.0796+/- 0.0001 yield_bpm0r03Y| Mean: -0.0110+/- 0.0000 Width: 0.0107+/- 0.0000 yield_bpm0r05X| Mean: -0.0382+/- 0.0001 Width: 0.0924+/- 0.0001 yield_bpm0r05Y| Mean: 1.7360+/- 0.0000 Width: 0.0142+/- 0.0000 ===================== Asymmetry/Differences ===================== diff_bpm4aX| Mean: 6.8390+/- 11.5637 Width: 10430.5930+/- 8.1768 diff_bpm4aY| Mean: 14.3178+/- 9.6456 Width: 8503.8136+/- 6.8205 diff_bpm4eX| Mean: 6.5353+/- 11.0560 Width: 9973.9626+/- 7.8177 diff_bpm4eY| Mean: 10.9781+/- 8.2182 Width: 7321.3920+/- 5.8111 diff_bpm4acX| Mean: 7.0310+/- 11.2980 Width: 10191.1938+/- 7.9889 diff_bpm4acY| Mean: 13.8567+/- 9.6779 Width: 8533.8135+/- 6.8433 diff_bpm4ecX| Mean: 6.2333+/- 11.1852 Width: 10090.6265+/- 7.9091 diff_bpm4ecY| Mean: 11.1877+/- 8.0057 Width: 7131.8237+/- 5.6609 diff_bpm1X| Mean: 6.1202+/- 10.4993 Width: 9465.0489+/- 7.4242 diff_bpm1Y| Mean: 10.4036+/- 8.2364 Width: 6900.2867+/- 5.8240 diff_bpm11X| Mean: 2.6816+/- 11.5097 Width: 10388.1432+/- 8.1386 diff_bpm11Y| Mean: -15.0150+/- 11.1307 Width: 9517.9235+/- 7.8706 diff_bpm12X| Mean: 3.5794+/- 30.2970 Width: 27333.7596+/- 21.4232 diff_bpm12Y| Mean: -11.0283+/- 7.8434 Width: 6752.1276+/- 5.5461 diff_bpm16X| Mean: -3.8448+/- 6.9818 Width: 6293.3677+/- 4.9369 diff_bpm16Y| Mean: -2.8099+/- 4.9886 Width: 4471.0783+/- 3.5275 diff_bpm1p02bX| Mean: 1.7449+/- 1.2309 Width: 1111.6567+/- 0.8704 diff_bpm1p02bY| Mean: 5.5415+/- 5.0751 Width: 4373.8543+/- 3.5887 diff_bpm1p03aX| Mean: 0.7039+/- 1.9199 Width: 1733.2691+/- 1.3576 diff_bpm1p03aY| Mean: 4.6675+/- 3.6705 Width: 3191.7870+/- 2.5955 diff_cav4bX| Mean: 8.2812+/- 14.7814 Width: 13332.5280+/- 10.4520 diff_cav4bY| Mean: 9.3641+/- 5.9276 Width: 5239.8176+/- 4.1915 diff_cav4cX| Mean: 0.4719+/- 0.8904 Width: 803.3128+/- 0.6296 diff_cav4cY| Mean: 1.0607+/- 0.6905 Width: 611.6478+/- 0.4882 diff_cav4dX| Mean: 2.8730+/- 5.2085 Width: 4698.6779+/- 3.6830 diff_cav4dY| Mean: 0.6337+/- 0.4185 Width: 371.9066+/- 0.2959 diff_bpm0i01X| Mean: 65.8177+/- 1.8852 Width: 1699.6006+/- 1.3331 diff_bpm0i01Y| Mean: -0.3574+/- 2.1018 Width: 1894.1862+/- 1.4862 diff_bpm0i01aX| Mean: 46.2260+/- 1.8818 Width: 1696.3223+/- 1.3306 diff_bpm0i01aY| Mean: -7.6164+/- 1.8730 Width: 1689.8003+/- 1.3244 diff_bpm0l01X| Mean: -2.0327+/- 3.3791 Width: 3053.3051+/- 2.3894 diff_bpm0l01Y| Mean: 2.5940+/- 1.9563 Width: 1762.3211+/- 1.3833 diff_bpm0l02X| Mean: -32.8136+/- 11.1784 Width: 10101.2835+/- 7.9043 diff_bpm0l02Y| Mean: 10.9656+/- 2.7166 Width: 2361.5071+/- 1.9209 diff_bpm0l03X| Mean: 19.4217+/- 34.5753 Width: 30189.7123+/- 24.4485 diff_bpm0l03Y| Mean: 35.2586+/- 34.4802 Width: 30093.8236+/- 24.3812 diff_bpm0l04X| Mean: -11.4556+/- 2.1130 Width: 1909.0307+/- 1.4941 diff_bpm0l04Y| Mean: -4.4909+/- 1.7119 Width: 1544.7421+/- 1.2105 diff_bpm0l05X| Mean: 19.6135+/- 7.8847 Width: 7046.3563+/- 5.5753 diff_bpm0l05Y| Mean: 0.3499+/- 1.9159 Width: 1727.8756+/- 1.3547 diff_bpm0l06X| Mean: 16.5667+/- 8.2170 Width: 7282.4906+/- 5.8103 diff_bpm0l06Y| Mean: 1.0853+/- 1.3007 Width: 1170.1295+/- 0.9197 diff_bpm0l07X| Mean: 23.6269+/- 12.7088 Width: 11293.1706+/- 8.9865 diff_bpm0l07Y| Mean: 0.7525+/- 1.2060 Width: 1082.6769+/- 0.8528 diff_bpm0l08X| Mean: 19.8225+/- 11.0199 Width: 9798.1073+/- 7.7922 diff_bpm0l08Y| Mean: -0.4202+/- 1.4223 Width: 1282.4641+/- 1.0057 diff_bpm0l09X| Mean: 17.3788+/- 10.2935 Width: 9158.9120+/- 7.2786 diff_bpm0l09Y| Mean: 0.1827+/- 1.4566 Width: 1313.9647+/- 1.0299 diff_bpm0l10X| Mean: 15.1992+/- 8.6404 Width: 7693.5565+/- 6.1097 diff_bpm0l10Y| Mean: 0.2686+/- 1.3364 Width: 1202.7420+/- 0.9450 diff_bpm0r03X| Mean: -29.5473+/- 75.8088 Width: 68445.4869+/- 53.6049 diff_bpm0r03Y| Mean: -2.4894+/- 1.5216 Width: 1373.1770+/- 1.0759 diff_bpm0r05X| Mean: -3.1299+/- 93.8586 Width: 84744.6071+/- 66.3681 diff_bpm0r05Y| Mean: -2.4030+/- 5.3092 Width: 4780.7993+/- 3.7541 diff_bpm2i01X| Mean: 8.9200+/- 1.1154 Width: 1006.6496+/- 0.7887 diff_bpm2i01Y| Mean: 2.1312+/- 1.2150 Width: 1096.9687+/- 0.8591 diff_bpm2i02X| Mean: -57.6059+/- 1.2269 Width: 1108.0838+/- 0.8675 diff_bpm2i02Y| Mean: -13.6291+/- 1.2358 Width: 1115.8959+/- 0.8739 diff_bpm0i02X| Mean: -18.6178+/- 1.7041 Width: 1537.3511+/- 1.2050 diff_bpm0i02Y| Mean: -9.6892+/- 1.3926 Width: 1258.2434+/- 0.9847 diff_bpm0i02aX| Mean: -51.2940+/- 1.7450 Width: 1575.3681+/- 1.2339 diff_bpm0i02aY| Mean: 13.6144+/- 1.3625 Width: 1229.2297+/- 0.9635 diff_bpm0i05X| Mean: 63.6971+/- 1.8622 Width: 1680.6121+/- 1.3168 diff_bpm0i05Y| Mean: -4.2637+/- 1.6953 Width: 1529.3929+/- 1.1988 diff_bpm0i07X| Mean: 32.4672+/- 1.6002 Width: 1440.5112+/- 1.1315 diff_bpm0i07Y| Mean: -0.8619+/- 1.5893 Width: 1431.9966+/- 1.1238 diff_bpm1i02X| Mean: -82.2212+/- 1.0665 Width: 962.7561+/- 0.7541 diff_bpm1i02Y| Mean: -32.8555+/- 0.7611 Width: 687.8088+/- 0.5382 diff_bpm1i04X| Mean: 17.4427+/- 1.1291 Width: 1019.6322+/- 0.7984 diff_bpm1i04Y| Mean: 40.6275+/- 0.8803 Width: 794.5507+/- 0.6225 diff_bpm1i06X| Mean: 80.1920+/- 1.7116 Width: 1543.7311+/- 1.2103 diff_bpm1i06Y| Mean: 15.7116+/- 2.3636 Width: 2128.1597+/- 1.6713 asym_bcm_an_ds| Mean: 210.7745+/- 340.0144 Width: 304.3597+/- 0.2404 asym_bcm_an_ds3| Mean: 206.1224+/- 342.5446 Width: 306.6154+/- 0.2422 asym_bcm_an_us| Mean: 239.9585+/- 341.5895 Width: 305.7746+/- 0.2415 asym_bcm_dg_us| Mean: 243.6342+/- 349.3118 Width: 312.8309+/- 0.2470 asym_bcm_dg_ds| Mean: 260.1558+/- 343.7552 Width: 307.7691+/- 0.2431 asym_cav4bQ| Mean: 445.1461+/- 494.4157 Width: 443.8656+/- 0.3496 asym_cav4cQ| Mean: 169.9503+/- 368.2426 Width: 330.1766+/- 0.2604 asym_cav4dQ| Mean: 248.9391+/- 476.8268 Width: 429.5656+/- 0.3372 asym_bcm0l02| Mean: 342.3442+/- 380.2209 Width: 336.9693+/- 0.2689 asym_bpm0i02WS| Mean: 13470.9372+/- 307.1943 Width: 276.6594+/- 0.2172 asym_bpm0i02aWS| Mean: 17775.5687+/- 306.9234 Width: 275.1193+/- 0.2170 asym_bpm0i05WS| Mean: 3155.5006+/- 319.5608 Width: 285.7607+/- 0.2260 asym_bpm0i07WS| Mean: 2705.8664+/- 325.4556 Width: 290.3572+/- 0.2301 asym_bpm1i02WS| Mean: 8311.7887+/- 134.9902 Width: 120.5215+/- 0.0955 asym_bpm2i01WS| Mean: 9287.0578+/- 147.5434 Width: 131.6203+/- 0.1043 asym_bpm2i02WS| Mean: 9458.3315+/- 143.4530 Width: 127.6818+/- 0.1014 asym_bpm0i01WS| Mean: 15431.1600+/- 244.2259 Width: 220.0626+/- 0.1727 asym_bpm0i01aWS| Mean: 15335.0157+/- 234.3902 Width: 211.1018+/- 0.1657 asym_bpm0l01WS| Mean: 433.0329+/- 330.9818 Width: 296.9423+/- 0.2340 asym_bpm0l02WS| Mean: 509.4028+/- 459.8330 Width: 413.6325+/- 0.3252 asym_bpm0l03WS| Mean: -987.0294+/- 1454.7395 Width: 1275.8873+/- 1.0287 asym_bpm0l04WS| Mean: 192.7328+/- 330.9581 Width: 295.4828+/- 0.2340 asym_bpm0l05WS| Mean: 72.8981+/- 348.0193 Width: 311.9188+/- 0.2461 asym_bpm0l06WS| Mean: 44.4120+/- 336.9800 Width: 301.3884+/- 0.2383 asym_bpm0l07WS| Mean: 43.7957+/- 338.2617 Width: 302.6118+/- 0.2392 asym_bpm0l08WS| Mean: 174.1335+/- 329.2150 Width: 294.2366+/- 0.2328 asym_bpm0l09WS| Mean: -148.7556+/- 350.8540 Width: 309.2810+/- 0.2481 asym_bpm0l10WS| Mean: 196.8610+/- 341.7429 Width: 305.7342+/- 0.2416 asym_bpm0r03WS| Mean: 471.4168+/- 423.4012 Width: 381.0726+/- 0.2994 asym_bpm0r05WS| Mean: -35.9552+/- 470.7288 Width: 422.9864+/- 0.3329 asym_bpm0i02WS| Mean: 13470.9372+/- 307.1943 Width: 276.6594+/- 0.2172 asym_bpm0i02aWS| Mean: 17775.5687+/- 306.9234 Width: 275.1193+/- 0.2170 asym_bpm0i05WS| Mean: 3155.5006+/- 319.5608 Width: 285.7607+/- 0.2260 asym_bpm0i07WS| Mean: 2705.8664+/- 325.4556 Width: 290.3572+/- 0.2301 asym_bpm1i02WS| Mean: 8311.7887+/- 134.9902 Width: 120.5215+/- 0.0955 asym_bpm1i04WS| Mean: 8658.5678+/- 128.1531 Width: 114.5079+/- 0.0906 asym_bpm1i06WS| Mean: 15474.7855+/- 237.8507 Width: 214.2042+/- 0.1682 ================= Combined Elements ================= asym_bcm_an_us_bcm_an_ds_agg_avg| Mean: 225.2110+/- 340.5526 Width: 304.8387+/- 0.2408 asym_bcm_an_avg_bcm_dg_ds_agg_dd| Mean: -24.3553+/- 16.7886 Width: 15.1316+/- 0.0119 asym_bcm_an_avg_bcm_dg_us_agg_dd| Mean: -10.6934+/- 23.7426 Width: 21.4492+/- 0.0168 asym_bcm_an_us_ds3_avg_bcm_dg_ds_agg_dd| Mean: -25.3730+/- 16.5697 Width: 14.9351+/- 0.0117 asym_bcm_an_us_ds3_avg_bcm_dg_us_agg_dd| Mean: -11.8747+/- 23.5450 Width: 21.2712+/- 0.0166 asym_bcm_an_us_bcm_an_ds_agg_dd| Mean: 14.8301+/- 12.4363 Width: 11.1496+/- 0.0088 asym_bcm_an_us_bcm_an_ds3_agg_avg| Mean: 222.8792+/- 341.8389 Width: 305.9862+/- 0.2417 asym_bcm_an_us_bcm_an_ds3_agg_dd| Mean: 16.0722+/- 11.8541 Width: 10.6146+/- 0.0084 asym_bcm_dg_us_bcm_an_ds_agg_avg| Mean: 227.2752+/- 343.7432 Width: 307.7467+/- 0.2431 asym_bcm_dg_us_bcm_an_ds_agg_dd| Mean: 17.0005+/- 24.7563 Width: 22.3642+/- 0.0175 asym_bcm_dg_ds_bcm_an_ds_agg_avg| Mean: 235.4636+/- 341.3731 Width: 305.5936+/- 0.2414 asym_bcm_dg_ds_bcm_an_ds_agg_dd| Mean: 30.8445+/- 18.1310 Width: 16.3414+/- 0.0128 asym_bcm_dg_us_bcm_an_us_agg_avg| Mean: 241.9373+/- 344.5431 Width: 308.4649+/- 0.2436 asym_bcm_dg_us_bcm_an_us_agg_dd| Mean: 3.1188+/- 24.4457 Width: 22.0850+/- 0.0173 asym_bcm_dg_ds_bcm_an_us_agg_avg| Mean: 250.1174+/- 342.1747 Width: 306.3135+/- 0.2420 asym_bcm_dg_ds_bcm_an_us_agg_dd| Mean: 15.7854+/- 17.8186 Width: 16.0667+/- 0.0126 asym_bcm_dg_us_bcm_dg_ds_agg_avg| Mean: 252.1107+/- 345.4083 Width: 309.2637+/- 0.2442 asym_bcm_dg_us_bcm_dg_ds_agg_dd| Mean: -19.3553+/- 27.0933 Width: 24.4499+/- 0.0192 asym_bcm_cav4cQ_bcm_an_us_agg_avg| Mean: 204.8178+/- 353.6732 Width: 316.8668+/- 0.2501 asym_bcm_cav4cQ_bcm_an_us_agg_dd| Mean: -28.6124+/- 33.7267 Width: 30.4322+/- 0.0238 asym_bcm_cav4cQ_bcm_an_ds_agg_avg| Mean: 191.0288+/- 352.8757 Width: 316.1504+/- 0.2495 asym_bcm_cav4cQ_bcm_an_ds_agg_dd| Mean: -17.5848+/- 34.0999 Width: 30.7653+/- 0.0241 asym_bcm_cav4cQ_bcm_dg_us_agg_avg| Mean: 207.6991+/- 356.8348 Width: 319.7453+/- 0.2523 asym_bcm_cav4cQ_bcm_dg_us_agg_dd| Mean: -33.8664+/- 39.0447 Width: 35.2605+/- 0.0276 asym_bcm_cav4cQ_bcm_dg_ds_agg_avg| Mean: 215.3934+/- 354.4629 Width: 317.5929+/- 0.2506 asym_bcm_cav4cQ_bcm_dg_ds_agg_dd| Mean: -45.4636+/- 36.2026 Width: 32.6818+/- 0.0256 ====================================== Japan Regressed Asymmetry/Difference ===================================== ======================================= Postpan Regressed Asymmetry/Difference ======================================= ======================================= Postpan Asymmetry/Difference Corrections ======================================= ======================================= Japan Slopes ======================================= ======================================= Postpan Slopes =======================================