Slug: 176 IHWP: In Wein: Left HRS: Both Units: Yields: bpm (mm), bcm (uA), sam/det (mV_uA) Asym: bcm/sam/det mean (ppb), bcm/sam/det width (ppm) Diff: bpm (nm) Slopes: All Devices (ppb/nm) ====== Yields ====== yield_bcm_an_ds| Mean: 146.4437+/- 0.0006 Width: 0.5276+/- 0.0004 yield_bcm_an_ds3| Mean: 147.1416+/- 0.0006 Width: 0.5347+/- 0.0004 yield_bcm_an_us| Mean: 146.2971+/- 0.0006 Width: 0.5307+/- 0.0004 yield_bcm_dg_us| Mean: 144.5563+/- 0.0006 Width: 0.5111+/- 0.0004 yield_bcm_dg_ds| Mean: 143.4237+/- 0.0006 Width: 0.5255+/- 0.0004 yield_cav4bQ| Mean: 145.2447+/- 0.0007 Width: 0.5820+/- 0.0005 yield_cav4cQ| Mean: 151.6754+/- 0.0006 Width: 0.5158+/- 0.0004 yield_cav4dQ| Mean: 149.0987+/- 0.0007 Width: 0.5721+/- 0.0005 yield_bcm0l02| Mean: 119.4362+/- 0.0008 Width: 0.7098+/- 0.0006 yield_bpm0i01WS| Mean: 153941.1095+/- 0.3083 Width: 264.1380+/- 0.2180 yield_bpm0i01aWS| Mean: 137830.3434+/- 0.2758 Width: 236.2758+/- 0.1951 yield_bpm0l01WS| Mean: 128236.9574+/- 0.2521 Width: 214.7207+/- 0.1783 yield_bpm0l02WS| Mean: 136888.4971+/- 0.4041 Width: 344.8023+/- 0.2857 yield_bpm0l03WS| Mean: 134429.3259+/- 0.6804 Width: 563.4411+/- 0.4811 yield_bpm0l04WS| Mean: 127835.4856+/- 0.2745 Width: 234.7614+/- 0.1941 yield_bpm0l05WS| Mean: 128338.9336+/- 0.2667 Width: 227.8733+/- 0.1886 yield_bpm0l06WS| Mean: 127542.5991+/- 0.2667 Width: 227.9753+/- 0.1886 yield_bpm0l07WS| Mean: 143327.1681+/- 0.3013 Width: 257.5129+/- 0.2130 yield_bpm0l08WS| Mean: 145173.8523+/- 0.3031 Width: 259.1080+/- 0.2143 yield_bpm0l09WS| Mean: 140523.7200+/- 0.2975 Width: 254.2635+/- 0.2103 yield_bpm0l10WS| Mean: 140484.3966+/- 0.2984 Width: 254.9951+/- 0.2110 yield_bpm0r03WS| Mean: 139935.3242+/- 0.3984 Width: 340.0029+/- 0.2817 yield_bpm0r05WS| Mean: 133218.5105+/- 0.4022 Width: 341.6001+/- 0.2844 yield_bpm0i02WS| Mean: 140639.5909+/- 0.3017 Width: 258.4067+/- 0.2133 yield_bpm0i02aWS| Mean: 142181.2236+/- 0.2801 Width: 239.4695+/- 0.1980 yield_bpm0i05WS| Mean: 155811.5034+/- 0.2881 Width: 246.3842+/- 0.2037 yield_bpm0i07WS| Mean: 149803.8835+/- 0.2866 Width: 244.9768+/- 0.2027 yield_bpm1i02WS| Mean: 144295.0447+/- 0.3060 Width: 262.0379+/- 0.2164 yield_bpm1i04WS| Mean: 149698.8214+/- 0.3252 Width: 278.5638+/- 0.2300 yield_bpm1i06WS| Mean: 143539.2847+/- 0.3067 Width: 262.5287+/- 0.2169 yield_bpm2i01WS| Mean: 127111.1750+/- 0.3052 Width: 261.3554+/- 0.2158 yield_bpm2i02WS| Mean: 130771.6595+/- 0.3112 Width: 266.4366+/- 0.2200 yield_cav4bX| Mean: -0.5635+/- 0.0000 Width: 0.0229+/- 0.0000 yield_cav4bY| Mean: -0.8058+/- 0.0000 Width: 0.0077+/- 0.0000 yield_cav4cX| Mean: 0.0015+/- 0.0000 Width: 0.0013+/- 0.0000 yield_cav4cY| Mean: -0.1195+/- 0.0000 Width: 0.0008+/- 0.0000 yield_cav4dX| Mean: 0.0672+/- 0.0000 Width: 0.0080+/- 0.0000 yield_cav4dY| Mean: -0.0779+/- 0.0000 Width: 0.0005+/- 0.0000 yield_bpm4aX| Mean: -0.4505+/- 0.0000 Width: 0.0175+/- 0.0000 yield_bpm4aY| Mean: 0.6266+/- 0.0000 Width: 0.0118+/- 0.0000 yield_bpm4eX| Mean: -0.0664+/- 0.0000 Width: 0.0194+/- 0.0000 yield_bpm4eY| Mean: 0.3359+/- 0.0000 Width: 0.0120+/- 0.0000 yield_bpm4acX| Mean: -0.9588+/- 0.0000 Width: 0.0175+/- 0.0000 yield_bpm4acY| Mean: 0.6176+/- 0.0000 Width: 0.0121+/- 0.0000 yield_bpm4ecX| Mean: -0.0168+/- 0.0000 Width: 0.0176+/- 0.0000 yield_bpm4ecY| Mean: 0.0616+/- 0.0000 Width: 0.0110+/- 0.0000 yield_bpm1X| Mean: 3.4866+/- 0.0000 Width: 0.0160+/- 0.0000 yield_bpm1Y| Mean: 2.1334+/- 0.0000 Width: 0.0135+/- 0.0000 yield_bpm11X| Mean: 0.7158+/- 0.0000 Width: 0.0145+/- 0.0000 yield_bpm11Y| Mean: -0.2370+/- 0.0000 Width: 0.0138+/- 0.0000 yield_bpm12X| Mean: -1.4615+/- 0.0001 Width: 0.0393+/- 0.0000 yield_bpm12Y| Mean: 0.7375+/- 0.0000 Width: 0.0095+/- 0.0000 yield_bpm16X| Mean: -0.4359+/- 0.0000 Width: 0.0091+/- 0.0000 yield_bpm16Y| Mean: -0.2268+/- 0.0000 Width: 0.0053+/- 0.0000 yield_bpm0i02X| Mean: -0.2812+/- 0.0000 Width: 0.0053+/- 0.0000 yield_bpm0i02Y| Mean: -2.2881+/- 0.0000 Width: 0.0083+/- 0.0000 yield_bpm0i02aX| Mean: 1.1803+/- 0.0000 Width: 0.0097+/- 0.0000 yield_bpm0i02aY| Mean: -1.0628+/- 0.0000 Width: 0.0070+/- 0.0000 yield_bpm0i05X| Mean: -0.5462+/- 0.0000 Width: 0.0053+/- 0.0000 yield_bpm0i05Y| Mean: -0.5715+/- 0.0000 Width: 0.0039+/- 0.0000 yield_bpm0i07X| Mean: -0.9512+/- 0.0000 Width: 0.0040+/- 0.0000 yield_bpm0i07Y| Mean: 0.6601+/- 0.0000 Width: 0.0028+/- 0.0000 yield_bpm1i02X| Mean: -2.0937+/- 0.0000 Width: 0.0088+/- 0.0000 yield_bpm1i02Y| Mean: -1.2976+/- 0.0000 Width: 0.0080+/- 0.0000 yield_bpm1i04X| Mean: 1.3092+/- 0.0000 Width: 0.0078+/- 0.0000 yield_bpm1i04Y| Mean: 0.3007+/- 0.0000 Width: 0.0043+/- 0.0000 yield_bpm1i06X| Mean: 1.8072+/- 0.0000 Width: 0.0096+/- 0.0000 yield_bpm1i06Y| Mean: 0.8519+/- 0.0000 Width: 0.0032+/- 0.0000 yield_bpm2i01X| Mean: 0.5932+/- 0.0000 Width: 0.0021+/- 0.0000 yield_bpm2i01Y| Mean: -4.3067+/- 0.0000 Width: 0.0022+/- 0.0000 yield_bpm2i02X| Mean: 0.7232+/- 0.0000 Width: 0.0085+/- 0.0000 yield_bpm2i02Y| Mean: -3.4316+/- 0.0000 Width: 0.0085+/- 0.0000 yield_bpm0i01X| Mean: -0.8251+/- 0.0000 Width: 0.0066+/- 0.0000 yield_bpm0i01Y| Mean: 0.7789+/- 0.0000 Width: 0.0022+/- 0.0000 yield_bpm0i01aX| Mean: -2.0748+/- 0.0000 Width: 0.0039+/- 0.0000 yield_bpm0i01aY| Mean: 2.8008+/- 0.0000 Width: 0.0034+/- 0.0000 yield_bpm0l01X| Mean: -1.4928+/- 0.0000 Width: 0.0064+/- 0.0000 yield_bpm0l01Y| Mean: -5.7055+/- 0.0000 Width: 0.0076+/- 0.0000 yield_bpm0l02X| Mean: -3.1804+/- 0.0000 Width: 0.0157+/- 0.0000 yield_bpm0l02Y| Mean: 1.5339+/- 0.0000 Width: 0.0068+/- 0.0000 yield_bpm0l03X| Mean: -4.0437+/- 0.0001 Width: 0.0875+/- 0.0001 yield_bpm0l03Y| Mean: -0.6225+/- 0.0001 Width: 0.0881+/- 0.0001 yield_bpm0l04X| Mean: -2.6730+/- 0.0000 Width: 0.0075+/- 0.0000 yield_bpm0l04Y| Mean: -0.2374+/- 0.0000 Width: 0.0054+/- 0.0000 yield_bpm0l05X| Mean: 0.2796+/- 0.0000 Width: 0.0054+/- 0.0000 yield_bpm0l05Y| Mean: 2.5547+/- 0.0000 Width: 0.0048+/- 0.0000 yield_bpm0l06X| Mean: 2.4409+/- 0.0000 Width: 0.0069+/- 0.0000 yield_bpm0l06Y| Mean: -1.6859+/- 0.0000 Width: 0.0025+/- 0.0000 yield_bpm0l07X| Mean: -0.3031+/- 0.0000 Width: 0.0113+/- 0.0000 yield_bpm0l07Y| Mean: 0.2158+/- 0.0000 Width: 0.0020+/- 0.0000 yield_bpm0l08X| Mean: 0.0902+/- 0.0000 Width: 0.0102+/- 0.0000 yield_bpm0l08Y| Mean: -0.2954+/- 0.0000 Width: 0.0026+/- 0.0000 yield_bpm0l09X| Mean: 0.6495+/- 0.0000 Width: 0.0100+/- 0.0000 yield_bpm0l09Y| Mean: -0.0617+/- 0.0000 Width: 0.0030+/- 0.0000 yield_bpm0l10X| Mean: -1.1188+/- 0.0000 Width: 0.0090+/- 0.0000 yield_bpm0l10Y| Mean: -0.5704+/- 0.0000 Width: 0.0032+/- 0.0000 yield_bpm0r03X| Mean: -1.5956+/- 0.0001 Width: 0.0774+/- 0.0001 yield_bpm0r03Y| Mean: 0.1124+/- 0.0000 Width: 0.0074+/- 0.0000 yield_bpm0r05X| Mean: -0.6921+/- 0.0001 Width: 0.0920+/- 0.0001 yield_bpm0r05Y| Mean: 1.7692+/- 0.0000 Width: 0.0102+/- 0.0000 ===================== Asymmetry/Differences ===================== diff_bpm4aX| Mean: -13.9294+/- 10.5779 Width: 9052.6711+/- 7.4797 diff_bpm4aY| Mean: 7.9255+/- 8.0476 Width: 6883.8408+/- 5.6905 diff_bpm4eX| Mean: -12.9040+/- 9.8476 Width: 8426.5554+/- 6.9633 diff_bpm4eY| Mean: 6.1577+/- 7.8761 Width: 6735.8150+/- 5.5692 diff_bpm4acX| Mean: -12.6581+/- 10.3414 Width: 8850.4078+/- 7.3124 diff_bpm4acY| Mean: 9.9204+/- 8.0845 Width: 6915.6910+/- 5.7166 diff_bpm4ecX| Mean: -12.7606+/- 9.8775 Width: 8453.2304+/- 6.9844 diff_bpm4ecY| Mean: 8.1288+/- 7.6606 Width: 6550.1047+/- 5.4169 diff_bpm1X| Mean: -12.6330+/- 9.7151 Width: 8314.1928+/- 6.8696 diff_bpm1Y| Mean: 8.4451+/- 6.9324 Width: 5899.0445+/- 4.9020 diff_bpm11X| Mean: -1.5862+/- 17.5983 Width: 14911.0092+/- 12.4439 diff_bpm11Y| Mean: -11.8262+/- 7.6278 Width: 6479.2228+/- 5.3937 diff_bpm12X| Mean: -2.9870+/- 46.5889 Width: 39468.2764+/- 32.9434 diff_bpm12Y| Mean: -8.7745+/- 5.8032 Width: 4945.9339+/- 4.1035 diff_bpm16X| Mean: 7.9069+/- 6.3599 Width: 5442.8372+/- 4.4971 diff_bpm16Y| Mean: -5.8618+/- 5.6401 Width: 4820.2680+/- 3.9882 diff_bpm1p02bX| Mean: 0.3740+/- 1.2694 Width: 1087.1154+/- 0.8976 diff_bpm1p02bY| Mean: 2.2307+/- 4.1470 Width: 3541.9634+/- 2.9324 diff_bpm1p03aX| Mean: -1.5175+/- 1.9644 Width: 1681.4821+/- 1.3890 diff_bpm1p03aY| Mean: 2.5374+/- 2.6782 Width: 2286.6993+/- 1.8937 diff_cav4bX| Mean: -17.7153+/- 13.7126 Width: 11737.5205+/- 9.6963 diff_cav4bY| Mean: 5.1681+/- 5.0228 Width: 4297.4569+/- 3.5517 diff_cav4cX| Mean: -1.0296+/- 0.7853 Width: 672.0836+/- 0.5553 diff_cav4cY| Mean: 0.6101+/- 0.5887 Width: 503.5505+/- 0.4163 diff_cav4dX| Mean: -6.3084+/- 4.6250 Width: 3958.0227+/- 3.2704 diff_cav4dY| Mean: 0.3882+/- 0.3786 Width: 323.8447+/- 0.2677 diff_bpm0i01X| Mean: 11.8423+/- 3.5275 Width: 3020.5082+/- 2.4943 diff_bpm0i01Y| Mean: -10.7640+/- 3.2175 Width: 2755.2490+/- 2.2751 diff_bpm0i01aX| Mean: 5.7817+/- 3.1761 Width: 2719.6664+/- 2.2459 diff_bpm0i01aY| Mean: -20.2523+/- 2.4977 Width: 2139.2394+/- 1.7661 diff_bpm0l01X| Mean: 3.4859+/- 4.3193 Width: 3700.4374+/- 3.0542 diff_bpm0l01Y| Mean: -5.5760+/- 2.7855 Width: 2379.1831+/- 1.9696 diff_bpm0l02X| Mean: -17.7617+/- 13.1234 Width: 11243.8658+/- 9.2796 diff_bpm0l02Y| Mean: 1.4434+/- 7.2448 Width: 6171.0051+/- 5.1228 diff_bpm0l03X| Mean: -30.7808+/- 27.8855 Width: 22578.3035+/- 19.7180 diff_bpm0l03Y| Mean: -16.5638+/- 27.8638 Width: 22554.2318+/- 19.7027 diff_bpm0l04X| Mean: -11.1524+/- 3.1300 Width: 2679.1255+/- 2.2132 diff_bpm0l04Y| Mean: 6.1586+/- 2.0041 Width: 1714.6303+/- 1.4171 diff_bpm0l05X| Mean: 13.1608+/- 8.1293 Width: 6920.0146+/- 5.7483 diff_bpm0l05Y| Mean: 0.3183+/- 2.2868 Width: 1956.0625+/- 1.6170 diff_bpm0l06X| Mean: 13.1135+/- 8.2634 Width: 7015.4624+/- 5.8431 diff_bpm0l06Y| Mean: -1.3536+/- 1.4257 Width: 1221.5776+/- 1.0081 diff_bpm0l07X| Mean: 21.4888+/- 12.8678 Width: 10922.2226+/- 9.0989 diff_bpm0l07Y| Mean: -1.6663+/- 1.3085 Width: 1120.6429+/- 0.9252 diff_bpm0l08X| Mean: 18.4032+/- 11.1465 Width: 9461.6702+/- 7.8817 diff_bpm0l08Y| Mean: -1.9067+/- 1.4791 Width: 1265.9933+/- 1.0459 diff_bpm0l09X| Mean: 17.4018+/- 10.4741 Width: 8891.2788+/- 7.4063 diff_bpm0l09Y| Mean: -0.8346+/- 1.5396 Width: 1318.0285+/- 1.0887 diff_bpm0l10X| Mean: 15.0336+/- 8.8262 Width: 7491.9488+/- 6.2410 diff_bpm0l10Y| Mean: -0.0406+/- 1.4894 Width: 1275.4113+/- 1.0531 diff_bpm0r03X| Mean: 28.4812+/- 95.4672 Width: 81483.9974+/- 67.5055 diff_bpm0r03Y| Mean: 2.1643+/- 1.6789 Width: 1438.0924+/- 1.1872 diff_bpm0r05X| Mean: -60.5768+/- 117.7372 Width: 100542.8472+/- 83.2528 diff_bpm0r05Y| Mean: 0.9088+/- 6.2278 Width: 5326.5434+/- 4.4037 diff_bpm2i01X| Mean: -1.6665+/- 1.3249 Width: 1135.4143+/- 0.9368 diff_bpm2i01Y| Mean: -7.9124+/- 1.4223 Width: 1218.6598+/- 1.0057 diff_bpm2i02X| Mean: -10.2405+/- 1.4233 Width: 1219.7040+/- 1.0064 diff_bpm2i02Y| Mean: -50.0853+/- 1.4653 Width: 1255.6405+/- 1.0361 diff_bpm0i02X| Mean: -35.8230+/- 2.3141 Width: 1982.5701+/- 1.6363 diff_bpm0i02Y| Mean: -44.7885+/- 1.7445 Width: 1494.5943+/- 1.2335 diff_bpm0i02aX| Mean: -66.9879+/- 2.2873 Width: 1959.0093+/- 1.6174 diff_bpm0i02aY| Mean: -30.7713+/- 1.7595 Width: 1506.4126+/- 1.2441 diff_bpm0i05X| Mean: 50.8410+/- 2.8443 Width: 2435.8429+/- 2.0113 diff_bpm0i05Y| Mean: 18.0709+/- 2.2731 Width: 1946.4951+/- 1.6073 diff_bpm0i07X| Mean: 20.2131+/- 3.2411 Width: 2717.7697+/- 2.2918 diff_bpm0i07Y| Mean: 7.3821+/- 1.7846 Width: 1514.0530+/- 1.2619 diff_bpm1i02X| Mean: -17.2489+/- 1.0118 Width: 867.0578+/- 0.7154 diff_bpm1i02Y| Mean: -47.5084+/- 0.8369 Width: 717.2017+/- 0.5918 diff_bpm1i04X| Mean: -16.4290+/- 1.1661 Width: 999.1345+/- 0.8246 diff_bpm1i04Y| Mean: 26.8063+/- 1.1792 Width: 1009.6592+/- 0.8338 diff_bpm1i06X| Mean: 15.9664+/- 3.2979 Width: 2823.9827+/- 2.3319 diff_bpm1i06Y| Mean: 12.3444+/- 3.6811 Width: 3152.0534+/- 2.6030 asym_bcm_an_ds| Mean: -37.0663+/- 222.4306 Width: 184.9195+/- 0.1573 asym_bcm_an_ds3| Mean: -50.3608+/- 224.3056 Width: 186.4884+/- 0.1586 asym_bcm_an_us| Mean: -30.4467+/- 223.9302 Width: 186.2052+/- 0.1583 asym_bcm_dg_us| Mean: -37.3524+/- 222.6862 Width: 184.9125+/- 0.1575 asym_bcm_dg_ds| Mean: -121.1143+/- 229.2956 Width: 190.7741+/- 0.1621 asym_cav4bQ| Mean: -744.7280+/- 472.2596 Width: 403.3512+/- 0.3339 asym_cav4cQ| Mean: 5.3402+/- 218.7535 Width: 181.8146+/- 0.1547 asym_cav4dQ| Mean: 102.0090+/- 396.4547 Width: 337.3390+/- 0.2803 asym_bcm0l02| Mean: 1779.7974+/- 309.2146 Width: 257.9684+/- 0.2186 asym_bpm0i02WS| Mean: 6728.5577+/- 265.0927 Width: 225.8724+/- 0.1874 asym_bpm0i02aWS| Mean: 6023.3155+/- 242.5908 Width: 204.6955+/- 0.1715 asym_bpm0i05WS| Mean: 1427.4453+/- 245.9203 Width: 206.1881+/- 0.1739 asym_bpm0i07WS| Mean: 1301.8013+/- 278.1162 Width: 233.6612+/- 0.1967 asym_bpm1i02WS| Mean: -1045.7596+/- 257.4565 Width: 219.4254+/- 0.1820 asym_bpm2i01WS| Mean: -1053.9188+/- 283.6011 Width: 241.5567+/- 0.2005 asym_bpm2i02WS| Mean: -1214.2577+/- 279.5169 Width: 238.0082+/- 0.1976 asym_bpm0i01WS| Mean: 2872.1927+/- 246.9591 Width: 210.4731+/- 0.1746 asym_bpm0i01aWS| Mean: 3970.9387+/- 238.9319 Width: 203.4474+/- 0.1690 asym_bpm0l01WS| Mean: 1073.1607+/- 288.0624 Width: 241.8711+/- 0.2037 asym_bpm0l02WS| Mean: 2314.0632+/- 465.3878 Width: 396.3418+/- 0.3291 asym_bpm0l03WS| Mean: 2016.7448+/- 1205.0746 Width: 984.8107+/- 0.8521 asym_bpm0l04WS| Mean: 1320.1877+/- 274.9113 Width: 230.1727+/- 0.1944 asym_bpm0l05WS| Mean: 1579.7514+/- 279.4121 Width: 233.8033+/- 0.1976 asym_bpm0l06WS| Mean: 1401.8754+/- 273.4933 Width: 228.7639+/- 0.1934 asym_bpm0l07WS| Mean: 1230.9124+/- 271.3562 Width: 226.8734+/- 0.1919 asym_bpm0l08WS| Mean: 1411.7703+/- 261.8918 Width: 218.7180+/- 0.1852 asym_bpm0l09WS| Mean: 1444.5480+/- 269.3394 Width: 225.3921+/- 0.1905 asym_bpm0l10WS| Mean: 1414.2140+/- 279.9699 Width: 234.0831+/- 0.1980 asym_bpm0r03WS| Mean: 1353.5442+/- 377.1246 Width: 319.0666+/- 0.2667 asym_bpm0r05WS| Mean: 1786.5919+/- 523.4560 Width: 446.5553+/- 0.3701 asym_bpm0i02WS| Mean: 6728.5577+/- 265.0927 Width: 225.8724+/- 0.1874 asym_bpm0i02aWS| Mean: 6023.3155+/- 242.5908 Width: 204.6955+/- 0.1715 asym_bpm0i05WS| Mean: 1427.4453+/- 245.9203 Width: 206.1881+/- 0.1739 asym_bpm0i07WS| Mean: 1301.8013+/- 278.1162 Width: 233.6612+/- 0.1967 asym_bpm1i02WS| Mean: -1045.7596+/- 257.4565 Width: 219.4254+/- 0.1820 asym_bpm1i04WS| Mean: -958.1861+/- 246.6982 Width: 210.2149+/- 0.1744 asym_bpm1i06WS| Mean: 400.7504+/- 266.9874 Width: 227.6174+/- 0.1888 ================= Combined Elements ================= asym_bcm_an_us_bcm_an_ds_agg_avg| Mean: -33.7914+/- 222.6968 Width: 185.1316+/- 0.1575 asym_bcm_an_avg_bcm_dg_ds_agg_dd| Mean: 42.6971+/- 22.0995 Width: 18.9168+/- 0.0156 asym_bcm_an_avg_bcm_dg_us_agg_dd| Mean: -2.4301+/- 25.2936 Width: 21.6736+/- 0.0179 asym_bcm_an_us_ds3_avg_bcm_dg_ds_agg_dd| Mean: 38.9138+/- 21.7584 Width: 18.6247+/- 0.0154 asym_bcm_an_us_ds3_avg_bcm_dg_us_agg_dd| Mean: -6.1773+/- 25.1882 Width: 21.5835+/- 0.0178 asym_bcm_an_us_bcm_an_ds_agg_dd| Mean: 6.3251+/- 13.2041 Width: 11.2605+/- 0.0093 asym_bcm_an_us_bcm_an_ds3_agg_avg| Mean: -40.4536+/- 223.6722 Width: 185.9497+/- 0.1582 asym_bcm_an_us_bcm_an_ds3_agg_dd| Mean: 14.9213+/- 12.6245 Width: 10.7560+/- 0.0089 asym_bcm_dg_us_bcm_an_ds_agg_avg| Mean: -37.3537+/- 220.7412 Width: 183.3015+/- 0.1561 asym_bcm_dg_us_bcm_an_ds_agg_dd| Mean: 3.9825+/- 26.1672 Width: 22.4214+/- 0.0185 asym_bcm_dg_ds_bcm_an_ds_agg_avg| Mean: -79.3385+/- 224.5021 Width: 186.6389+/- 0.1587 asym_bcm_dg_ds_bcm_an_ds_agg_dd| Mean: -41.1755+/- 23.1561 Width: 19.8229+/- 0.0164 asym_bcm_dg_us_bcm_an_us_agg_avg| Mean: -34.1989+/- 221.4939 Width: 183.9463+/- 0.1566 asym_bcm_dg_us_bcm_an_us_agg_dd| Mean: 0.0468+/- 26.1755 Width: 22.4291+/- 0.0185 asym_bcm_dg_ds_bcm_an_us_agg_avg| Mean: -76.0674+/- 225.2576 Width: 187.2868+/- 0.1593 asym_bcm_dg_ds_bcm_an_us_agg_dd| Mean: -45.2745+/- 23.0495 Width: 19.7322+/- 0.0163 asym_bcm_dg_us_bcm_dg_ds_agg_avg| Mean: -79.7011+/- 223.5440 Width: 185.6674+/- 0.1581 asym_bcm_dg_us_bcm_dg_ds_agg_dd| Mean: 45.3211+/- 30.5943 Width: 26.2072+/- 0.0216 asym_bcm_cav4cQ_bcm_an_us_agg_avg| Mean: -12.8018+/- 219.1384 Width: 182.1836+/- 0.1550 asym_bcm_cav4cQ_bcm_an_us_agg_dd| Mean: -3.2109+/- 32.4761 Width: 27.7886+/- 0.0230 asym_bcm_cav4cQ_bcm_an_ds_agg_avg| Mean: -17.1275+/- 218.3797 Width: 181.5295+/- 0.1544 asym_bcm_cav4cQ_bcm_an_ds_agg_dd| Mean: 3.0121+/- 32.3190 Width: 27.6523+/- 0.0229 asym_bcm_cav4cQ_bcm_dg_us_agg_avg| Mean: -14.9145+/- 217.3684 Width: 180.5539+/- 0.1537 asym_bcm_cav4cQ_bcm_dg_us_agg_dd| Mean: -5.8376+/- 39.2505 Width: 33.6073+/- 0.0278 asym_bcm_cav4cQ_bcm_dg_ds_agg_avg| Mean: -58.0151+/- 220.8906 Width: 183.6473+/- 0.1562 asym_bcm_cav4cQ_bcm_dg_ds_agg_dd| Mean: 44.7116+/- 38.1696 Width: 32.6733+/- 0.0270 ====================================== Japan Regressed Asymmetry/Difference ===================================== ======================================= Postpan Regressed Asymmetry/Difference ======================================= ======================================= Postpan Asymmetry/Difference Corrections ======================================= ======================================= Japan Slopes ======================================= ======================================= Postpan Slopes =======================================