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Hall C Møller MC
• Based on Monte Carlo from SLAC SLC-linac Møller

polarimeter
– M . Swartz et al, NIMA 363 (1995) 526-537

• Standalone FORTRAN based simulation (not GEANT3)
• Does not include particle interactions – just checks 

apertures
• Generator includes

– Internal radiative effects via electron structure function 
technique

– Levchuk effect
• Cross section and asymmetry applied as weights to 

generated events
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Event Generation
1. Z-position of scatter picked randomly along length of 

target
2. Incoming beam electron undergoes multiple scattering, 

Bremsstrahlung energy loss on the way to vertex
3. Møller scattering event generated (more next slide 

slides)
4. Both outgoing electrons undergo MS/Bremsstrahlung 

energy loss
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Møller event generation w/Levchuk
Møller scattering generated flat in cosqCM, fCM

plab = pbeam(1 + cos ✓⇤)

Small angle 
approximation
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Møller event generation – Levchuk Effect
Levchuk effect results in correction to lab scattering angle in event generator –
easy to apply

Need to generate momentum for target electron
à Event generator uses screened hydrogen atom wave functions
à Works well for K-L shell, where the smearing is significant 
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charge seen by an electron is screened by all inner-shell 
electrons and one half of the same-shell neighbors, 

n- 1 N,’ - 1 
Z;=Zi- c N;‘- 2, 

I 

where Zj is the nuclear charge of the jth species and Ni is 
the number of electrons in the jth shell. 

The modelled K-, L-, M-, and N-shell momentum 
distributions for the iron atom are shown on a logarithmic 
scale in Fig. 9. They are compared with the semiempirical 
K- and L-shell parameterizations of Chen, Kwei, and Tung 
[16] which are shown as boxes and circles, respectively. 
The agreement is perfect for the K-shell distributions. The 
L-shell distributions agree well except at the largest mo- 
menta. Since the CKT parameterization for the L-shell is 
composed of modified K-shell distributions, it does not 
have the correct asymptotic momentum dependence to 
describe the p-wave portions of the L-shell. It is therefore 
likely that the CKT parameterization fails in this region. 
This hypothesis is supported by a comparison of the 
modelled distributions with the L-, M-, and N-shell 
Hartree-Fock calculations of Weiss, Harvey, and Phillips 
(WHP) [17]. The WHP calculations agree well with the 
modelled distributions even at large momenta. 

The simulated signal observed at the Moller detector 
per target electron is shown in Fig. 2 for each of the 
atomic iron shells shown in Fig. 9. Note that the peaks in 
Fig. 2 associated with the K- and L-shell targets are 
substantially broadened and produce much less signal at 
the center of the distribution than do the M- and N-shell 
signals. This is a graphic illustration of the Levchuk effect. 
The more highly polarized M-shell produces a larger Moller 
scattering asymmetry near the center of the peak. The 
asymmetry of the adjacent regions is diluted by the same 
effect and the overall width of the elastic peak is broad- 
ened. The complete simulation is shown in Fig. 10. The 
signal S(y) and longitudinal scattering asymmetry .@‘=(y) 
are shown as functions of position y on the detector. The 
solid curves incorporate all effects including the atomic 

0  50 100 150 200 
Pe (keV/c) 

Fig. 9. The modelled K-, L-, M-, and N-shell momentum distribu- 
tions for the iron atom are shown as continuous curves. The K- 
and L-shell parameterizations of Ref. [16] are shown as boxes and 
circles, respectively. 
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Fig. 10. The complete simulation of the signal and longitudinal 
scattering asymmetry (analyzing power) observed at the Moller 
detector. The solid curves incorporate all effects including the 
atomic momentum distributions. The dashed curves show the 
same simulation with zero atomic momenta. 

momentum distributions (the wiggles in the asymmetry 
function are caused by limited Monte Carlo statistics in 
regions of small accepted cross section). The dashed curves 
show the same simulation with zero atomic momenta. Note 
that the asymmetry function (analyzing power) is increased 
by 14% at the Moller peak and is substantially diluted in 
the adjacent regions. 

5.2. The fitting procedure 

The polarimeter functions by recording the average 
signal in each detector channel for the two beam helicity 
states. The target helicity is reversed on successive runs. 
The data for the four helicity combinations are combined 
into average signals for the case where the beam and target 
spins are antiparallel, N( j, A = - 11, and parallel, N( j, A 
= l), where j labels the detector channels and A labels the 
relative beam-target helicity state. Combining the data in 
this manner suppresses the small helicity-dependent asym- 
metry in the electron current which can be produced by 
residual linear polarization in the electron source laser 
beam (typically < 0.1%). The net beam current asymme- 

try A, is directly measured with toroid beam current 
monitors in the linac. 

The detected signals are produced by a number of 
processes. The Moller scattering process produces high 
energy electrons which are directly accepted by the spec- 
trometer but also shower on acceptance edges producing a 
diffuse signal at the detector. Nuclear scattering with inter- 
nal or external radiation and several related processes can 
also produce high energy electrons which are accepted by 
the spectrometer. Finally, beam halo and target-related 
collision products can produce signal on the most well- 
shielded detectors. To account for these processes, the 
signals N( j, A) are fit simultaneously to the sum of the 
Moller signal shape derived from the Monte Carlo simula- 

Hall C generator has 2 
momentum distributions
à Polarized electrons (M shell)
à Unpolarized electrons (K,L, 

shells)

Picks whether electron is 
polarized/unpolarized based on 
input target polarization
à Also generates target
momentum direction
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Radiative Effects (Internal)M. Swartz et al./Nucl. Instr. and Meth. in Phys. Res. A 363 (1995) 526-537 533 

Fig. 8. A diagram of the simple collinear radiation model used to 
simulate the effect of internal radiation upon the Meller scattering 
process. 

coordinates of the incident and scattered electrons are 
adjusted according to the Moliere parameterization for 
multiple Coulomb scattering in the target foils and vacuum 
window [lo]. The energies of the incident and scattered 
electrons are adjusted to account for external bremsstrah- 
lung in the target foils and vacuum window [ll]. The 
detailed response of the detector package is simulated 
according to the parameterized results of a number of 
EGS4 simulations [12]. 

The thicknesses of the target foils are less than or 
comparable to the equivalent radiator thickness for the ee 
scattering process at the SLC beam energy [ll]. This 
implies that internal radiative processes are more important 
than the external radiative processes occurring in the target 
foils. Collinear initial and final state radiative effects are 
incorporated into the Monte Carlo simulation via the elec- 
tron structure function approach. The resulting cross sec- 
tions and asymmetries are checked against the complete 
first-order Monte Carlo calculation of Jadach and Ward 
1131.  

The simple collinear radiation model is based upon the 
approximation illustrated in Fig. 8. In the center-of-mass 
frame of the beam and target electrons (the btcm-frame), 
the initial-state electrons can radiate the fractions (1 - x,) 
and (1 - x,) of their energies A/2 (sr is defined in Eq. 
(7)) before colliding. Similarly, the detected final state 
electron can radiate the fraction (1 -x3) of its energy into 
collinear photons. Photon emmission at finite angles and 
purely virtual corrections are neglected in this approxima- 
tion. The tree-level differential cross section for polarized 
Moller scattering in the post-initial-state radiation center- 
of-mass (pisrcm) frame is given by Eqs. (1) and (2) with s 
replaced by sr x1 xa. The radiatively-corrected differential 
cross section is given by the product of the tree-level cross 
section and electron structure functions for each external 
leg of the process shown in Fig. 8, 

da 

do dx, dx, dx, 

where the functions D(x, T) are electron structure func- 
tions [ 141 at the momentum-transfer scale T. For this work, 
we assume that T is the minimum of the magnitudes of the 
Mandelstam variables 1 t, 1 and 1 u1 1 defined in the absence 
of internal radiation, 

T=$l - I c e s  61). 

The scattering angle and momentum of the final state 
electron in the laboratory frame are found by Lorentz 
boosting the pisrcm-frame momenta to the btcm-frame and 
then to the laboratory frame. The expressions given in Eqs. 
(8) and (9) are modified as follows, 

p’ = F(l +cos 6) 

B’=2m,x($--3(l-$). (13) 

It is clear that internal radiation affects both the momen- 
tum and the angle of the scattered electron. 

The simulation of the atomic momentum distributions 
for the target electrons is based upon screened hydrogen 
atom wavefunctions in momentum space. This approxima- 
tion is reasonable for the K- and L-shell electrons which 
are bound to individual atomic sites. The outer-shell elec- 
trons in a metal form energy bands and are probably not 
described well by this approach. However, since most of 
the Levchuk line broadening is caused by the high- 
momentum, inner-shell electrons, an accurate description 
of the lower-momentum portion of the electron population 
is not necessary. The hydrogen atom wave functions [15] 
&t(q) are normalized as follows, 

i dq q2 I Ads) I2 = 1, (14) 

where: q is the electron momentum in units of Zam, (Z is 
the nuclear charge), n is the principal quantum number, 
and 1 is the angular momentum quantum number. The 
actual momentum distributions for unpolarized and polar- 
ized electrons, f,,,(p) and f,,(p), are constructed as 
follows, 

(15) 

where: j labels the atomic species of the target foil, Gil is 
the fraction of the total unpolarized electron population 
that is associated with the jth species and the nl orbital, 
D& is the fraction of the polarized d-wave, M-shell elec- 
trons that are associated with the jth species, and Pi = 
Zicxm, is an atomic momentum scale that has been ad- 
justed to account for screening. The effective nuclear 
charge Zh is given by the simple ansatz that the nuclear 

Initial (final) state electrons can radiate fraction 1-x1 and 1-x2 (1-x3 and 1-x4) 
of their energies

Cross section becomes:
�(s0) ! �(x1x2s1)D(x1, T )D(x2, T )D(x3, T )D(x4, T )

D(x,T): electron structure functions at momentum scale T

plab =
pbeamx1x3
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Event Generation Flow

P1=0.5*PBEAM*X1*(1.+COSTAR)
P2=0.5*PBEAM*X1*(1.-COSTAR)
THETA1=SQRT(CORFAC*TWOELM*X2*(1./P1-1./(X1*PBEAM)))
THETA2=SQRT(CORFAC*TWOELM*X2*(1./P2-1./(X1*PBEAM)))

Calculate vertex kinematics

Levchuk Initial state, internal radiation

à Generate cosqCM, fCM

à Generate target electron momentum
à Generate initial state radiation according to approximate distribution

à Generate final state radiation –apply kinematic correction to outgoing 
electrons (P1à x3P1, P2à x4P2)

à Calculate event weight: cross section + radiative correction (also 
correcting for approximate form used in generation), and analyzing power


