

QuestionCan we predict where the A_T enhancement using pure optics principles?

- Would like to place quartz in a unique of focal plane to pick up A_T
- Would also like to look at the $\theta_{tg}\,$ sensitivity, $A_{T}\,{\propto}\,\theta_{tg},\,\Phi$

Concerns

Should be able to predict where the A_T enhancement shows up using second order optics matrix elements Idea is put A_T detector where the red spot Sits on the fringe of the acceptance

Is it possible that the enhancement is outside the calibration region?

- Beam transport of charged particles through HRS can be studied using optics.
- For PREX (SQQD_nQ)
- Would like a way to relate focal plane variables to target variables (Optics Matrix Formalism)
- Taylor expansion around central trajectory (1st order expansion 5D vector, 2nd order expansion 20D vector
- Each element in HRS chain represented by a matrix

Beam Transport (1st Order)

Express focal plane variables as a Taylor expansion of the target variables (1^{st} order optics matrix is 5 x 5)

Target Coordinate System

- θ_{tg} out of plane angle
- ϕ_{tg} in plane angle
- Use x_{tg} , $y_{tg} = +/-2mm$ in each direction to simulate raster
- Flat sample target variables to do optics

HRS Tune (1st Order Matrix Elements)

Field values q1 = 0.099950, q2 = -0.132890 q3 = -0.171751(x| θ) and (y| ϕ) ~ 0 - Point to point imaging in x,y at focal plane detector

Collimator

• Enforce collimator cut before looking at detector plane distributions

 $(x|x) = 0.91, (x|\theta) = 2.28, (y|y) = 0.98, (y|\phi) = 2.39$

Optics model Inputs

- Want our optics model to be an accurate representation of the data
- Requires septum mistune
- Requires weighted sampling
 - Input Mott cross section
- Requires identifying calibration region (BPM info, target thickness etc.)

Focal Plane (Rates)

Simulation

z = 1.0 m Downstream Focal Plane

Data

Focal Plane (Analyzing Power)

Simulation

Focal Plane (Figure of Merit)

Simulation

Data

 A_{T} Plane (Rates)

Simulation

Data

Put 1d plots

A_T Plane (Analyzing Power)

Simulation

Data

A_T Plane (Figure of Merit)

Simulation

Data

Sieve Data

Sieve In(no raster, Super Thin ¹²C, 0.075 mm thick) Sieve Out (beam raster, ²⁰⁸Pb/Diamond, 0.8 mm thick)

Identify calibration region by looking at sieve data with different targets

Focal Plane

Detector Plane, z from VDC = 1.0 m

Pb target (sieve out, beam raster) Super thin ¹²C (sieve in, no beam raster)

- Observe the offset between sieve in an sieve out data
- Is that due energy ionization losses, beam off center?
- Make a sieve cut around the center hole and try to isolate the same set of ray bundles (i.e, ϕ_{tg} , θ_{tg})

Data (Full Coverage)

<u>Central Hole Sieve Slit - Survey measurements</u> Z = 798.02 mm, X = 69.91 mm, Y = -1.50 mmalong central spectrometer line

- Distance between target and sieve = 0.8 m
- diameter = 4mm

$$x_{sieve} = 0.8*\theta_{tg}$$
$$y_{sieve} = 0.8*\phi_{tg}$$

- Center hole cut $\operatorname{sqrt}(\theta_{tg}^2 + \phi_{tg}^2) < 0.0025$
- Use this to explore ionization losses

Ionization Losses

Target	dE/dx (MeV cm²/g)	Thickness (g/cm ²)	Energy Ionization Loss (MeV)
Lead/Diamond	1.122	0.902	1.374648
Super Thin ¹² C	1.749	0.017	0.029733

- dE = (dE/dx) * thickness
 - 1063 MeV beam
- dE/dx obtained from Particle Data Group
- Offset due to ionization losses ~ 15.5 mm using $(x|\delta) = 16.73$

Exploring Ionization Losses

x_{detplane}, z from VDC = 1.0 m (With Circle Cut)

Pb target (sieve out, beam raster) Super thin ¹²C (sieve in, no beam raster)

- We need to compare these on the same level i.e., compare the data with same set of ray bundles
- Optics calibration data has no raster
- Lead data has beam raster which has to be accounted for
- Crucial to look at beam positions

Beam Positions

Run Number	Comment	BPMA.xpos (mm)	BPMA.ypos (mm)	BPMB.xpos (mm)	BPMB.ypos (mm)	Target.xpos (mm)	Target.ypos (mm)
27412 (0.5 μA)	Spot Check (No Target)	-0.0367491	0.280214	-0.0404017	0.974841	-0.0415	1.224
27427 (0.05 μA)	Sieve Out Pb/D	0	0	0	0	0	0
27428 (0.5 μA)	Spot Check (No Target)	-0.0248617	0.2189595	-0.102949	1.20861	-0.119	1.41263
27118 (0.5 μA)	Sieve In Thin Carbon	0.0186223	-0.0398863	-0.0597374	-0.0173224	-0.07589	-0.01267
27119 (0.5 μA)	Sieve In Thin Carbon	0.1598886	0.0253923	00796082	0.0304588	0.06306	0.0315
27120 (0.5 μA)	Sieve In Thin Carbon	0.0881368	-0.0146237	0.0215824	0.0280935	0.007862	0.0369

Beam Positions

X plot

(x|x) = -7.816 after bpm correction

(x|x) = -3.09 from optics

Y plot

(y|y) = 2.853 after bpm correction

(y|y) = 2.11 from optics

Plots

x_{detplane}, z from VDC = 1.0 m (With Circle Cut)

Pb target (sieve out) Super thin ¹²C (sieve in)

Fits

Carbon

Lead

Peak = 2.51 mm

Peak = -14.69 mm

Ionization Losses

Target	dE/dx (MeV cm²/g)	Thickness (g/cm²)	Energy Ionization Loss (MeV)	Peak Position Fit (mm)	Predicted Peak Position (mm)
Lead	1.122	0.902	1.374648	2.51	-18.7
Super Thin ¹² C	1.749	0.017	0.029733	-14.69	-5.55

- Offset due to ionization losses ~ 15.5 mm using $(x|\delta) = 16.73$
 - Difference in those positions $\sim 13.2 \text{ mm}$
- (x|x) coupling from optics and data don't agree (-7.905 from data vs -3.09 from optics)

Summary