# **Optics and Tracking**

Chandan Ghosh Stony Brook University March 5, 2019

Weak elastic scattering with Nuclei

# Outline

- Necessity of Q2 measurement
- Optics calibration
- Optics reconstruction
- Dependence of Q2 on pileup, beam position
- Plan for PREX-II/CREX
- Background estimation from inelastic excitation
- Conclusions

# Need of Q<sup>2</sup> measurement

$$A_{pv} = rac{G_F Q^2}{4\pi lpha \sqrt{2}} [1 - 4 sin^2( heta_w) - rac{F_n(Q^2)}{F_p(Q^2)}]$$

Apv has strong dependence on  $Q^2$ .

$$Q^2=2EE'(1-cos heta)$$

Parameters needed for Q<sup>2</sup> measurement

- Incident beam energy (E) measured accurate to 3E-04 level.
- Energy of scattered electron (E') —
- The scattering angle ( $\theta$ ) Spectrometer

### Hall A Spectrometer



Septum: to kick  $5^{\circ}$  scattered electrons to  $12.5^{\circ}$  - Need recalibration the spectrometers



Momentum accuracy range - 3.E0-4 for 0.3 - 4.0 GeV Minimum scattering angle = $12.5^{\circ}$ 

### Scattering angle ( $\theta$ ) measurement



# **Spectrometer Central Angle**

Use differential recoil in elastic scattering

$$E'=rac{E-E_{loss}}{1+rac{2(E-E_{loss})sin^2(rac{ heta}{2})}{M_t}}-E_{loss}$$

Water Cell target

$$egin{aligned} \Delta E' &= E'_O - E'_H \ &= Eig(rac{1}{1+rac{2Esin^2(rac{ heta}{2})}{M_O}} - rac{1}{1+rac{2Esin^2(rac{ heta}{2})}{M_H}}ig) \end{aligned}$$

 $+ \ correction$ 

- E': scattered energy
- E: beam energy
- E<sub>loss</sub>: energy loss
- $\theta$ : scattering angle
- M<sub>t</sub>: target mass

#### For 5° scattering angle(calculated):

| E-E' <sub>Pb</sub> (MeV) | 1.0 |
|--------------------------|-----|
| E-E' <sub>o</sub> (MeV)  | 1.7 |
| E-E' <sub>H</sub> (MeV)  | 5.8 |

Advantages:

- Suppress E<sub>loss</sub> (~1 MeV) uncertainly
- Eliminate run-to-run energy and beam position variations

### PREX-I:Watercell target momentum spectrum



Extracted angle: Left HRS -  $5.065 \pm 0.020$  deg; Right HRS -  $5.007 \pm 0.046$  deg

# Cross-check of momentum calibration

#### P<sub>o</sub>: Central momentum setting



K. Saenboonruang's thesis

### Spectrometer optics reconstruction

 $\theta_0$  measurement will allow to quote Q<sup>2</sup> value at  $\theta_0$ . But PREX needs average Q<sup>2</sup> over the entire spectrometer acceptance - this requires optics reconstruction

$$\begin{pmatrix} \delta \\ \theta \\ y \\ \phi \end{pmatrix}_{\mathrm{tg}} = \begin{pmatrix} \langle \delta | x \rangle & \langle \delta | \theta \rangle & 0 & 0 \\ \langle \theta | x \rangle & \langle \delta | \theta \rangle & 0 & 0 \\ 0 & 0 & \langle y | y \rangle & \langle y | \phi \rangle \\ 0 & 0 & \langle \phi | y \rangle & \langle \phi | \phi \rangle \end{pmatrix} \cdot \begin{pmatrix} x \\ \theta \\ y \\ \phi \end{pmatrix}_{\mathrm{fp}}$$

Tools: sieve collimator in front of septum magnet, data using carbon, watercell, tantalum target

# Sieve pattern





0.49

0.43

# Average Q<sup>2</sup> analysis

- Event having Quartz signal only used for Q<sup>2</sup> analysis
- Q<sup>2</sup> distribution changes with
  - Pileup
  - Beam position



#### Q<sup>2</sup> distributions

# Q<sup>2</sup> distribution vs pileup





- Trigger rate <100 kHz is used for Q<sup>2</sup> measurement
- 1 track-cut shift average Q<sup>2</sup> by -0.06+0.05% this is taken as systematic error.

# Q<sup>2</sup> distribution vs beam position



- Normal operational limit of VDC ~ 10 kHz/cm<sup>2</sup>. PREX (~50-100 µA) has ~ 50 MHz/cm<sup>2</sup>!!
  - The beam-position-monitors won't work at low current (~50 nA) required for Q<sup>2</sup> measurement using vertical drift chamber.
- Change in beam positon increase Q<sup>2</sup> in one arm and decrease in another
  - GEM detectors will be used in PREX-II/CREX to avoid the low current limit

# Q<sup>2</sup>:Beam positon correction



Beam position and reconstracted y\_tg are corellated

### **Error sources**

| Error Source           | Percent Error in Q <sup>2</sup> |
|------------------------|---------------------------------|
| Beam Energy            | 0.1%                            |
| Final Momentum         | 0.1%                            |
| Scattering Angle       | 0.9%                            |
| Pileup                 | <0.1%                           |
| Total systematic error | ~1.0%                           |
| Statistical error      | <0.1%                           |

| Average LHRS Q <sup>2</sup> (GeV2) | 0.009330 |
|------------------------------------|----------|
| Average RHRS Q <sup>2</sup> (GeV2) | 0.008751 |
| Average Q <sup>2</sup> (GeV2)      | 0.009066 |

 Total systematic error ~ 1%.
The uncertainty from scattering angle measurement was the main source the uncertainty in Q<sup>2</sup>.

# **GEM detectors**

Perfect candidate for replacing the VDCs

- Can handle ~ 105 Hz/mm
- Position resolution ~100 μm

This will allow Q2 measurement at high current - the BPMs will lock beam position.



# Background contribution from Inelastic excitations of target

The integrating mode data acquisition doesn't allow to separate contribution from elastic scattering and background from target inelastic excitation. From optics reconstruction for Pb target will give an estimate of excited state background.

| State  | Energy (MeV) | Acceptance<br>(%) |
|--------|--------------|-------------------|
| Ground | 0            | ~100              |
| 3⁻     | 2.615        | ~60               |
| 5⁻     | 3.198        | ~20               |
| 5⁻     | 3.709        | ~10               |

$$\sigma_{3-}/\sigma_{\text{elastic}}$$
 (at q=0.47 fm<sup>-1</sup>) ~0.1%

Background contribution from  $3^{-}$  state is ~0.06%



17

# Conclusions

- 1% precision in Q<sup>2</sup> measurement is possible using differential recoil in elastic scattering
- The uncertainty from scattering angle measurement is the main source of uncertainty in Q<sup>2</sup> measurement
- GEM detectors will help to run the counting-mode-DAQ with higher beam current
- The optics reconstruction helps to estimate background contribution from target inelastic excitations.

# Thanks for your attention

# Backup slide

# Sieve reconstruction



# Finite acceptance correction

