Beam Transport Studies

Ryan Richards

Beam Transport

- Looking at transport through HRS(QQD_nQ). Septum introduced before first quadrupole. Type equation here.Measurements made at focal plane in HRS. Need a way to link target variables to focal plane variables. Beam transport optics can be studied using matrix formalism.
- First order studies express focal plane variables as Taylor expansion of target variables to first order (5x5)
- Second order studies second order Taylor expansion (now 20 x 20)

Exploring 1st Order Effects

First Order Matrix Elements

Field values q1 = 0.096255, q2 = -0.131739, q3 = -0.170480

First order studies

- Target variables sampled randomly(expect δ , fixed at 0 i.e., along central ray)
- $x_{y_{tg}}$ sampling range chosen to be ± 2 mm in each direction simulates 4mm x 4mm beam raster
- Angular sampling ranges allowed to vary
- Before transport to focal plane, enforced Q1 collimator cut at the Q1 entrance

Q1 Collimator Cut

Unweighted histogram x_{Q1} vs y_{Q1}

Q1

~ 10 % loss of statistics enforcing cut (initially 50,000 events)

 Θ_{tg} weighted histogram at Q1 collimator

Important for A_T systematic studies $A_T \sim \sin \theta_{tg.}$ Will require septum mistune

Focal Plane ($\delta = 0$)

Observe not exactly a point but smearing in the focal plane due to beam raster

Focal Plane ($\delta = 0.01$)

Recall $(x|\delta) = 17.71$ so spot moves in the focal plane. Also see slight shift $(y|\delta) = -0.57$ from the target to focal plane

Exploring 2nd Order Effects

Second Order Effects

- Second order effects include cross terms for target variables e.g., x^2 , $x\theta$, $x\delta$, etc.
- Matrix is now 20 x 20 matrix no longer 5 x 5 matrix
- Looking at $\delta = 0$

Focal Plane

Rate, z from VDC = 1.0 m

z Progression (0.25m down Focal Plane)

z = 0.25m downstream Focal Plane ($\delta = 0$)

z Progression (0.5m down Focal Plane)

z Progression (0.75m downstream)

z Progression (1m down Focal Plane)

Rate, z from VDC = 2.0 m

 $<\theta_{ta}>$, z from VDC = 2.0 m

Summary

• Began exploring first and second order beam transport from the target

• Need to mistune septum for A_T studies and compare results with existing data.