SAM Rate Simulation for New Designs Radiation Meeting

Tao Ye

Stony Brook University

July, 17th, 2018

Geant 4 Run information

Beam Parameters

- Target Position: -105 cm
- ► Target Material: Pure Lead (11.39 g/cm³)
- ► Target Thickness: 0.05 cm (0.569 g/cm²)
- Beam Energy: 1.0 GeV
- ▶ Beam Current: 70 μ A
- Raster: 4 mm x 4 mm
- Physics List: FTFP_BERT_HP

Beamline

- Collimator
- Septum
- No Magnetic Field Applied
- Al Can Wall thickness: 0.065 inch = 1.651 mm

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへの

SAM Quartz

SAM Designs

- ► Actual Hall A SAM dimension 3.3 cm × 2 cm × 1.3 cm, with 45 deg bevel
- Previous simulation: 3 cm x 2 cm x 1.3 cm blocks
- New design: with 45 deg bevel
 - 2.6 cm x 2 cm x 6 mm
 - 1.85 cm x 2 cm x 6 mm
- This work: only the active area, without 45 deg bevel
 - 3.3 cm x 2 cm x 13 mm block
 - 2 cm x 2 cm x 6 mm block
 - 1.25 cm x 2 cm x 6 mm block

Note on new designs simulation

thickness should not change event rate:

 $Rate(2 \text{ cm} \times 2 \text{ cm} \times 6 \text{ mm}) \approx Rate(2 \text{ cm} \times 2 \text{ cm} \times 1.3 \text{ cm})$

- ▶ In term of rate, 45 deg bevel sees event from larger angle.
- ▶ In term of energy resolution, 45 deg devel parts produce lower P.E. (unknown).

- ▶ P.E. yield from 45 bevel could be measured from simulation.
- So the effect on the RMS width is unknown.

Some Plots :)

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ○ のへで

SAM Rate - Position Scan Curve

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - シスペ

SAM Rate - Position Scan

Only electron counts

Bottom Pos.(cm)	Rate1 (GHz)	Rate2 (GHz)	Rate3 (GHz)
5.5	4329.1	3480.0	2623.7
6.5	2385.3	1930.4	1464.2
7.5	1259.6	1050.5	800.1
8.5	616.3	539.9	427.9
9.5	251.9	236.8	195.6
10.5	84.1	75.2	70.2
11.5	21.8	15.3	11.4
12.5	15.0	10.0	7.0

Rate 1: Assuming 3.3 cm × 2 cm active area (not realistic)

- Rate 2: 2.0 cm x 2 cm active area
- Rate 3: 1.25 cm x 2 cm active area

SAM Width

Pos.(cm)	2x2x1.3 (ppm)	2x2x0.6 (ppm)	1.25x2x1.3 (ppm)	1.25×2×0.6 (ppm)
5.5	3	3	4	4
6.5	4	4	5	5
7.5	6	6	7	7
8.5	8	8	9	9
9.5	12	12	13	14
10.5	21	22	22	23
11.5	48	49	55	56
12.5	59	60	70	72

▶ for 1.3 cm thickness: resolution 39 %

▶ for 0.6 cm thickness: resolution 46 %

Backup: SAM Width from Rate

$$\sigma = \frac{1}{\sqrt{2 \times R \times 2T}},$$

- \triangleright R: is the rate, [sec⁻¹]
- The first factor 2: for two helicity windows, L and R
- The second factor 2: for (1+4)-(2+3) quadruplet asymmetry
- \blacktriangleright T = 0.0083 sec: for 120 Hz helicity

Asymmetry degradation with finite energy resolution

$$\sigma' = \sigma \sqrt{1 + \left(\frac{\Delta E}{E}\right)^2}$$

The following slides show asymmetries including finite detector energy resolution