Difference between revisions of "RunPlan"
(25 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
== PREX Run Plan for Commissioning and Auxiliary Measurements == | == PREX Run Plan for Commissioning and Auxiliary Measurements == | ||
+ | <font color="magenta">This was for the 2010 PREX-I run. </font> A run plan for PREX-II and C-REX is forthcoming. | ||
− | See also the [[RunPlanDaily| Daily Run Plan]] | + | See also the [[RunPlanDaily| Daily Run Plan]] and [[PreviousRunPlanDaily| Earlier Daily Run Plan]] |
− | + | The experiment is approved for 30 PAC days; there are <font color="blue">2 weeks of "commissioning"</font> listed, and then an additional <font color="blue">61 days for production</font>. <br><br> | |
− | Below is a list of tasks in the approximate time order, with person(s) responsible, approximate amount of time required, and comments about the conditions or needs. The time will, in most cases, be broken up into manageable chunks. For example, the GEM commissioning will occur in about 4 periods of time, each 4 hours, separated by at least one day. | + | Below is a list of tasks in the approximate time order, with person(s) responsible, approximate amount of time required, and comments about the conditions or needs. The time will, in most cases, be broken up into manageable chunks. For example, the GEM commissioning will occur in about 4 periods of time, each 4 hours, separated by at least one day. After commissioning we go into a regular production mode; see the [http://hallaweb.jlab.org/parity/prex/runinfo/opmanual.html HOWTO] webpage for shift worker instructions for the 2010 run. |
== Spillover from Beam Restore == | == Spillover from Beam Restore == | ||
<UL> | <UL> | ||
− | <LI> <font color="blue">Basic Beam Setup</font> -- <font color="green"> | + | <LI> <font color="blue">Basic Beam Setup</font> -- <font color="green">1 shift</font> Jay Benesch, Bteam <br> |
− | <LI> <font color="blue">Source and Parity Quality Beam</font> -- <font color="green"> | + | <LI> <font color="blue">Source and Parity Quality Beam</font> -- <font color="green"> essentially done </font> Kent Paschke, Mark Dalton, Rupesh Silwal <br> |
</UL> | </UL> | ||
− | == Low Current Checkout with Water Cell ( | + | == Low Current Checkout with Water Cell (2-3 calendar days) == |
<UL> | <UL> | ||
− | <LI> <font color="red">Septum checkout</font> -- <font color="green"> | + | <LI> <font color="red">Septum checkout (Sieve IN)</font> -- <font color="green">1 shift</font> |
<UL> | <UL> | ||
Line 22: | Line 23: | ||
<UL> | <UL> | ||
<LI> Verify septum does not steer beam | <LI> Verify septum does not steer beam | ||
− | <LI> Thin target, | + | <LI> Thin target, first VDC data at 1-2 uA |
− | |||
</UL> | </UL> | ||
− | <LI> <font color="blue">Low-current cavities</font> -- | + | <LI> <font color="blue">Low-current cavities</font> -- Bob Michaels |
<UL> | <UL> | ||
− | <LI> Need before Optics and Q<sup>2</sup> | + | <LI> Check hardware at 1-2 uA |
− | + | </UL> | |
+ | |||
+ | <LI> <font color="blue">Target alignment check</font> -- Bob Michaels | ||
+ | <UL> | ||
+ | <LI> Check spot on BeO viewer | ||
+ | <LI> Put in Ta or ultra-thin C12 target | ||
+ | <LI> Scan few mm up-down, left-right, verify from rates we're not hitting a frame. | ||
+ | </UL> | ||
+ | <LI> <font color="blue">VDC Checkout</font> -- Dustin McNulty, Alexandre Camsonne, Bob Michaels | ||
+ | <UL> | ||
+ | <LI> Look for sieve holes; first check on optics | ||
+ | </UL> | ||
+ | |||
+ | <LI> <font color="blue">Quartz detectors checkout</font> -- Dustin McNulty, Piotr Decowski, Jon Wexler | ||
+ | <UL> | ||
+ | <LI> Calibrate detector x-y movers in VDC coordinates | ||
+ | </UL> | ||
+ | <LI> <font color="blue">GEM checkout</font> -- Ole Hansen, Alexandre Camsonne, Nilanga Liyanage | ||
+ | <UL> | ||
+ | <LI> First look at noise, pulse-heights, tracks | ||
+ | </UL> | ||
+ | |||
+ | </UL> | ||
+ | <LI> <font color="red">Spectrometer checkout (Sieve OUT)</font> -- <font color="green">1 shift</font> | ||
+ | |||
+ | <UL> | ||
+ | <LI> <font color="green">Low-current cavities (Priority activity)</font> -- John Musson, Zafar Ahmed | ||
+ | <UL> | ||
+ | <LI> Need before subsequent program, especially Optics and Q<sup>2</sup> | ||
</UL> | </UL> | ||
Line 35: | Line 63: | ||
<LI> First spectra on specific thin targets | <LI> First spectra on specific thin targets | ||
<LI> Learn to measure rates to 10% and study rate dependence effects | <LI> Learn to measure rates to 10% and study rate dependence effects | ||
− | |||
</UL> | </UL> | ||
Line 43: | Line 70: | ||
<LI> If possible, compare 6 and 10 mm blocks | <LI> If possible, compare 6 and 10 mm blocks | ||
<LI> Map shadow of quartz (both primary and A_T hole) in VDCs | <LI> Map shadow of quartz (both primary and A_T hole) in VDCs | ||
− | |||
</UL> | </UL> | ||
<LI> <font color="blue">GEM checkout</font> -- Ole Hansen, Alexandre Camsonne, Nilanga Liyanage | <LI> <font color="blue">GEM checkout</font> -- Ole Hansen, Alexandre Camsonne, Nilanga Liyanage | ||
Line 52: | Line 78: | ||
</UL> | </UL> | ||
− | <LI> <font color="red">A_T hole characterization</font> -- <font color="green"> | + | <LI> <font color="red">A_T hole characterization</font> -- <font color="green">1 shift</font> |
<UL> | <UL> | ||
<LI> <font color="green"> Determine placement of A_T detectors (Priority activity)</font> -- Bob Michaels, Dustin McNulty | <LI> <font color="green"> Determine placement of A_T detectors (Priority activity)</font> -- Bob Michaels, Dustin McNulty | ||
<UL> | <UL> | ||
− | <LI> | + | <LI> Characterize acceptance on thin targets with A_T hole blocked & unblocked |
− | + | <LI> Two or three accesses to block and unblock A_T hole | |
− | |||
− | |||
− | |||
− | |||
− | <LI> | ||
</UL> | </UL> | ||
<LI> <font color="blue">Parasitic GEM/Detector studies</font> -- GEM & Detector teams | <LI> <font color="blue">Parasitic GEM/Detector studies</font> -- GEM & Detector teams | ||
Line 79: | Line 100: | ||
<LI> Sieve Slit runs | <LI> Sieve Slit runs | ||
<LI> Angle calibration | <LI> Angle calibration | ||
− | |||
</UL> | </UL> | ||
Line 107: | Line 127: | ||
<LI> <font color="green">Parity Quality (Priority activity)</font> -- Kent, Rupesh, Luis, Dustin et al | <LI> <font color="green">Parity Quality (Priority activity)</font> -- Kent, Rupesh, Luis, Dustin et al | ||
<UL> | <UL> | ||
− | <LI> IA feedback, beam modulation | + | <LI> IA feedback, beam modulation ( low current modulation - dithering commissioning before CW ) |
<LI> Evaluate LUMI regression performance | <LI> Evaluate LUMI regression performance | ||
</UL> | </UL> | ||
Line 133: | Line 153: | ||
<LI> <font color="green">Characterization of Integrating Detector response (Priority activity)</font> -- KK, Jon, Dustin et al | <LI> <font color="green">Characterization of Integrating Detector response (Priority activity)</font> -- KK, Jon, Dustin et al | ||
<UL> | <UL> | ||
+ | <LI> Estimate detector rates & impact of A_T hole flux | ||
<LI> Evaluate primary detector and LUMI noise peformance | <LI> Evaluate primary detector and LUMI noise peformance | ||
<LI> Evaluate BPM performance; compare strip-line regression to cavity regression | <LI> Evaluate BPM performance; compare strip-line regression to cavity regression | ||
Line 140: | Line 161: | ||
<UL> | <UL> | ||
<LI> Compare predicted and measured integrating width prediction at moderate current on thick target | <LI> Compare predicted and measured integrating width prediction at moderate current on thick target | ||
+ | </UL> | ||
+ | </UL> | ||
+ | </UL> | ||
+ | |||
+ | == Polarimetry Beam Checkout (1 shift) == | ||
+ | <UL> | ||
+ | <LI> <font color="red">Moller Beam Checkout</font> -- <font color="green">2 shifts</font> | ||
+ | |||
+ | <UL> | ||
+ | <LI> <font color="green">Moller magnet alignment (Priority activity)</font> -- Moller team | ||
+ | <UL> | ||
+ | <LI> Verify Moller magnet does not steer beam | ||
+ | </UL> | ||
+ | <LI> <font color="blue">Parasitic Compton Checkout</font> -- Compton team | ||
+ | <UL> | ||
+ | <LI> Feedback to MCC on beam quality | ||
+ | <LI> Simultaneous performance on Moller tune, compton background and sufficient raster | ||
+ | </UL> | ||
+ | <LI> <font color="blue">Access to remove water cell</font> -- Dave Meekins | ||
+ | <UL> | ||
+ | <LI> begin cold target operation | ||
</UL> | </UL> | ||
</UL> | </UL> | ||
Line 194: | Line 236: | ||
<LI> Thin C12 to measure diamond background | <LI> Thin C12 to measure diamond background | ||
</UL> | </UL> | ||
+ | <LI> Possible scan of Q1 to optimize acceptance and verify that collimator defines acceptance. | ||
</UL> | </UL> |
Latest revision as of 10:48, 6 June 2017
PREX Run Plan for Commissioning and Auxiliary Measurements
This was for the 2010 PREX-I run. A run plan for PREX-II and C-REX is forthcoming.
See also the Daily Run Plan and Earlier Daily Run Plan
The experiment is approved for 30 PAC days; there are 2 weeks of "commissioning" listed, and then an additional 61 days for production.
Below is a list of tasks in the approximate time order, with person(s) responsible, approximate amount of time required, and comments about the conditions or needs. The time will, in most cases, be broken up into manageable chunks. For example, the GEM commissioning will occur in about 4 periods of time, each 4 hours, separated by at least one day. After commissioning we go into a regular production mode; see the HOWTO webpage for shift worker instructions for the 2010 run.
Spillover from Beam Restore
- Basic Beam Setup -- 1 shift Jay Benesch, Bteam
- Source and Parity Quality Beam -- essentially done Kent Paschke, Mark Dalton, Rupesh Silwal
Low Current Checkout with Water Cell (2-3 calendar days)
- Septum checkout (Sieve IN) -- 1 shift
- Septum Commissioning (Priority activity) -- Bob Michaels, John LeRose
- Verify septum does not steer beam
- Thin target, first VDC data at 1-2 uA
- Low-current cavities -- Bob Michaels
- Check hardware at 1-2 uA
- Target alignment check -- Bob Michaels
- Check spot on BeO viewer
- Put in Ta or ultra-thin C12 target
- Scan few mm up-down, left-right, verify from rates we're not hitting a frame.
- VDC Checkout -- Dustin McNulty, Alexandre Camsonne, Bob Michaels
- Look for sieve holes; first check on optics
- Quartz detectors checkout -- Dustin McNulty, Piotr Decowski, Jon Wexler
- Calibrate detector x-y movers in VDC coordinates
- GEM checkout -- Ole Hansen, Alexandre Camsonne, Nilanga Liyanage
- First look at noise, pulse-heights, tracks
- Septum Commissioning (Priority activity) -- Bob Michaels, John LeRose
- Spectrometer checkout (Sieve OUT) -- 1 shift
- Low-current cavities (Priority activity) -- John Musson, Zafar Ahmed
- Need before subsequent program, especially Optics and Q2
- VDC Checkout -- Dustin McNulty, Alexandre Camsonne, Bob Michaels
- First spectra on specific thin targets
- Learn to measure rates to 10% and study rate dependence effects
- Quartz detectors checkout -- Dustin McNulty, Piotr Decowski, Jon Wexler
- Detector pulse height spectra
- If possible, compare 6 and 10 mm blocks
- Map shadow of quartz (both primary and A_T hole) in VDCs
- GEM checkout -- Ole Hansen, Alexandre Camsonne, Nilanga Liyanage
- First attempt at GEM commissioning
- Identify Quartz detector shadows in GEM & VDC coordinates
- Low-current cavities (Priority activity) -- John Musson, Zafar Ahmed
- A_T hole characterization -- 1 shift
- Determine placement of A_T detectors (Priority activity) -- Bob Michaels, Dustin McNulty
- Characterize acceptance on thin targets with A_T hole blocked & unblocked
- Two or three accesses to block and unblock A_T hole
- Parasitic GEM/Detector studies -- GEM & Detector teams
- Accumulate statistics on detector pulse height
- Learn to measure rates to 10% with GEMs
- A_T hole alignment
- Place A_T hole detector such that rate is ~ 100 times less than main detector (with thick target)
- Determine placement of A_T detectors (Priority activity) -- Bob Michaels, Dustin McNulty
- Water Cell & Optics -- 2 shifts
- Absolute angle measurement (Priority activity) -- Nilanga et al
- Sieve Slit runs
- Angle calibration
- Absolute angle measurement (Priority activity) -- Nilanga et al
Lead Target Checkout (1-2 calendar days)
- High Current Commissioning -- 1 shift
- Production target checkout (Priority activity) -- Bob Michaels et al
- 100 uA on thick Lead, monitor radiation levels, establish luminosity limits
- Electronics commissioning -- KK, Luis, Paul et al
- Establish LUMI performance characteristics
- Detailed measurements of various oversampling configurations
- Production target checkout (Priority activity) -- Bob Michaels et al
- Parity Commissioning -- 1 shift
- Parity Quality (Priority activity) -- Kent, Rupesh, Luis, Dustin et al
- IA feedback, beam modulation ( low current modulation - dithering commissioning before CW )
- Evaluate LUMI regression performance
- Beam monitor calibrations -- Diancheng Wang, Xiaoyan Deng
- Bulls-eye scan, fixed gain BPM calibration, BCM calibration
- Parity Quality (Priority activity) -- Kent, Rupesh, Luis, Dustin et al
- Q2 Measurement -- 1 shift
- Establish Q2 measurement sequence (Priority activity) -- Dustin, Nilanga et al
- Drift chamber rate measurement at a few nA
- parasitic GEM commissioning
- try to establish a rate in GEMs, especially in quartz shadow, at 10-100 nA
- ARC energy measurement -- Arun Saha
- Establish Q2 measurement sequence (Priority activity) -- Dustin, Nilanga et al
- High Luminosity Detector Commissioning -- 1 shift
- Characterization of Integrating Detector response (Priority activity) -- KK, Jon, Dustin et al
- Estimate detector rates & impact of A_T hole flux
- Evaluate primary detector and LUMI noise peformance
- Evaluate BPM performance; compare strip-line regression to cavity regression
- Establish empirical figure of merit for A_T hole detector
- Final parasitic GEM commissioning -- Ole, Nilanga et al
- Compare predicted and measured integrating width prediction at moderate current on thick target
- Characterization of Integrating Detector response (Priority activity) -- KK, Jon, Dustin et al
Polarimetry Beam Checkout (1 shift)
- Moller Beam Checkout -- 2 shifts
- Moller magnet alignment (Priority activity) -- Moller team
- Verify Moller magnet does not steer beam
- Parasitic Compton Checkout -- Compton team
- Feedback to MCC on beam quality
- Simultaneous performance on Moller tune, compton background and sufficient raster
- Access to remove water cell -- Dave Meekins
- begin cold target operation
- Moller magnet alignment (Priority activity) -- Moller team
Polarimetry Checkout (4-5 calendar days)
- Compton Commissioning -- 8 shifts Sirish Nanda, et.al.
- Beam Tune, Background reduction -- Bteam, Alexandre Camsonne
- Compton Cavity Checkout -- Sirish et.al.
- Photon Detector Checkout -- CMU group
- Electron Detector Checkout -- Alexandre Camsonne
- Moller Commissioning -- 8 shifts Sasha Glamazdin, et.al.
- Magnet Alignment -- 1 shift (swing)
- Raster size and pulse-mode -- 1 shift (day)
- Target commissioning - 3 shifts
- Pulse-mode target commissioning - 2 shifts
- DAQ checkout -- 1 shift
Establishing Production (2-3 calendar days)
- Production Checkout -- 2 shifts
- Final detector alignment checks
- Final LUMI/noise/helicity flip rate checks
- Final beam modulation tweaks
- Quick check for gross non-linearities
- 4 hours longitudinal polarization production data
- Transverse Polarization -- 4 shifts
- Double-Wien Spin Manipulator Commissioning -- Joe Grames
- Spin dance
- 4 hours transverse vertical polarization production
- 2 shifts transverse horizontal polarization production
Total time: approx 15 days ! Based on this list, each day we will come up with an adjustment to the Daily Run Plan. Some flexibility will be needed to accomodate problems and changes in plans.
Important Activities after few days of production
- Linearity Studies -- 1 shift Rupesh Silwal, Kent Paschke, Luis Mercado
- Background Studies -- 2 shifts
- Scans of Septum Magnet and HRS Dipole
- Thin Lead Target to check for inelastics at high-resolution
- Thin C12 to measure diamond background
- Possible scan of Q1 to optimize acceptance and verify that collimator defines acceptance.