Target density variation check

From PREX Wiki
Revision as of 10:19, 7 October 2019 by Sanghwa (talk | contribs)
Jump to navigationJump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Run summary

  • First measurement 09/02/2019
    • Summary plots
    • HALOG summary
    • Target #7 and #10 were checked for current range 5-70uA
    • Septum mistuned on purpose in order to reduce rates, T2 trigger is used
    • Sieve in
    • Clear non-uniformity observed from degraded target (#10) compared to good (still in use) target (#7).
    • More visible at higher current, but hint of similar signature of thickness rearrangement seen at low current.
    • Consistent results from both LHRS and RHRS spot data


  • Second measurement 09/03/2019
    • Summary plots
    • HALOG summary
    • Took high statistics run at very low current (30nA requested), Target #10
    • Septum at nominal setting, no Sieve
    • Similar result shown in RHRS data as previous high current test
    • Different distribution in LHRS is puzzling, might be related to DAQ problem


  • Qsq runs 09/03/2019
    • Summary plots from Qsq runs
    • HALOG run summary
    • 400-500k events for LHRS and RHRS runs during Qsq measurements with various targets (Pb7, 8, 9, 10)
    • Consistency between LHRS and RHRS recovered for target #10
    • Similar signature shown from Target 9 and 10. Target 9 and 10 were used with similar position wrt to collimator center. Later we moved the target ladder horizontally and vertically during repairs while we were running with Target 8. -> This is wrong, target repair happens around July 31 which was even before we started using target #9.
      • Actually the target ladder realignment was done during Target #9 period. (Aug. 7).


useful information

  • Target re-alignment done during PREX2

- July 18 (3mm to left)
- Augusg 7 (2mm to right): while using target #9


Weibn's simulation study

HALOG entry
Simulation check shows that increased thickness in some area of the target resulting increased power to the collimator (and higher effect on radiation). Assuming a donut like shape and factor 2 increase in the thickness in the outer area compared to the center, this brings the collimator power by factor ~3 (compared 1st and 4th row).



How to make plots

  • full replay macro can be found from:
/adaqfs/home/a-onl/sanghwa/stupid_spot/get_rastersize.C
  • To run:
> analyzer -b -q 'get_rastersize.C(run#, first evt, last evt, "outputpath/outputname")'

Example:

> analyzer -b -q 'get_rastersize.C(2293, 1, -1, "rootfiles/L2293.root")'
  • To draw raster current xy distribution:
    • /adaqfs/home/a-onl/sanghwa/stupid_spot/make_2D.C
> root -b
> .L make_2D.C
> plot_all("dyn_therm.list")
This will create dyn_dens.pdf. To open:
> evince dyn_dens.pdf &
  • Input file format:
<LHRS run#> <LHRS file path> <RHRS run#> <RHRS file path> <current> <target#>
  • or, draw directly from tree (adjust bin low/upper limit as needed):
> T->Draw("Rrb.Raster2.rawcur.y:Rrb.Raster2.rawcur.x >> h(100, 0, 1.e5, 100, 0, 1.e5)", "", "colz")
> T->Draw("Lrb.Raster2.rawcur.x:Lrb.Raster2.rawcur.y >> h(100, 0, 1.e5, 100, 0, 1.e5)", "", "colz")